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RESEARCH ON TEE MOTION OF ¥INOR PLANETS *[_l
Part I
H.v.Zeipelst#
L15 TT

Semiconvergent trigonometric series in powers of a small
parameter, based on Poincaré's methods, arc applied to a
qualitative theory on the motion of minor planets and or:
the origin of gaps in the interplanetary asteroid belt.
The asteroids are grouped into characteristic ordinary,
singular, regular, and critical planets whose mean abso-
lute motion is compared with that of Jupiter. A formal
theory is developed for critical planets of the {p + g) :
P type, and the absence of gaps in: the asteroid belt at
q25is explalned by the derived fact that the mot_on of
“eritical" minor planets is stable above this value.

yor; - o 7

In his authoritative work "New Methods of Celestial Mechanics" (Les
Methodes Nouvelles de la Mécanique Celeste) Poincare discussed the principles
of the formal integration of certain classes of differential equations that are
frequently encountered in dynamics. Poincare!s basic corcept is the use of
semiconvergent trigonometric series, expanded in powers of a small parameter.
3ecause of the canonical form of the rquations, always retained by Poincare, his
methods are extremely elegant. In such complex problems as celestisl mechanlcs,
elegance and symmetry of the formiias are naturally of major importance.

In Vol.I of his "lectures on Celestial Mechanics" (Legons de Mecanique
Celeste) Poincare himself applied these principles to a qualitative study of
the motion of the major planets.

The modern thecries of the moon, developed in a detailed manner by Delaunay
and by M.E.W.Brown, are based on similar principles.

In the research, whose first part is given here, I intend to apply these

" same principles (with several necessary modifications) tc a qualitative theory 7

of minor planets.

f)lanets can be formally solved by the above-mentioned semiconvergent series.
However, I will also specify so-called exceptional cases where entirely new
methods must be invented. It will be demonstrated that a study of these excep-
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* Numbers in the margin indicate paginat.lon in the original foreign text (Vol.ll,
No.l).|
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i Specifically, I intend to investigate cases in which the problem of minor [_
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”gble with ) and singular planets for which 6 is of the third order of magnitude
(comparable with u™°) or smaller.
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tional cases is intimately connected with the questiui as to the origin of the
gaps ir the interplanetary asteroid beslt. Incidentally, this is a question,
importart not only from the analytical viewpoint but also from the cosmogoni .
viewpoini, which is still far from soluticn.

At the top of our entire research complex, in Section 1 of this Part I, we.
will discuss a general method for reducing, as far as possible, the degree of
freedom of certain canonical systems of differential equations. In Section 2,
we will give differential equations, in a convenient form, con the motior of
minor planets.

In the following Sections of this Part, we will assume that the mean motion
of a minor planet is not in sn approximately commensurable and simple ratio %o
that. of Jupiter. These minor planets have become known as "ordinary" pianets f
("gewohnliche" planets according to the terminology of Brendel). First, in . '
Section 3, we will apply the method developed in Section 1 to the theory of !
these ordinary planets, by elimirating the two mean longitudes. This will yleld
differential equations of secular inequalities. The entire difficulty of the
problem is thus reduced to the integration of a canonical system with two de-
grees of freedom. In Sections 4, 5, and 6 we will develop secular inequalities i
in series arranged in accordance with the order of magnitude of the terms, tak-
ing into consideration the eccentricities, the inclination, and the square root

-of the mass of Juplte*, as quantities of the first order of magnitude. The varl-

ous terms of these series are trigonometric functions of the two arguments w' ;

-~ . and w", which are linear with respect to time. The velocities of the mentioned

arguments are of the order of the mass p of Jupiter, i.e., of the second order :

of magnitude. However, the velocity of the argument W + w" is of the fourth

order of magnitnde (or, occasionally, smaller). All difficulties of the problem

result from this fact. It follows from this that the terms composing the expan-

sion of secular inequalities are rational functions with respect to the mass of:.
Jupiter, to the eccentricity of its orbit, and to the moduli of the eccentrici-

ty and the inclination of the orbit of the minor planet. The denominators of /3

these rat’onal functions are powers'of a certain quantity & which is homogeneous

and linear with respect to the mass of Jupiter, to the square of the eccentrici-

t7 of its orbit, and to the squares of the moduli of eccentricity and inclina-;
tion of the orbit of the minor planet. In addition, wd more or less represents
the velocity of the argument w' + w" mentioned above.

Because of the divisor * .-ich apparently has escaped the attention of

scientists, two categories ¢. c.dinary minor planets mist te differentiated: ;
regular planets for which & truly is of the second order of magnitude (compar- |

The developments of the secular inequalities, formed in Sections 4, 5, and,
, lead to a complete solution of the problem for the case of regular planets.
onversely, for singular planets, the mentioned series can no longer be used.

The theory of singular planets will be treated in Part II of this research

Later, we will also study the case in which the mean motion of the two




" - variables y1, «es Jr and can be expanded in powers.of § and T, (k =1, 2, |

planets ar: more or less at a simple and commensurable ratio. This will finally
lead to the problem as to the crigin of the gaps in the distribution of the as-
teroids.

Section 1.

In celestial mechanics, freguently differential equations of the following:
type are encountered:

dz; _dF dy; dF . :

dt —dy‘.’ Wﬁ—a—z—i ('=1,2,...f), .

ds _CF  du__dF .. (1)

di _d'}k, at = " dE, (k=1,2,...8). ,
The characteristic function F does not depend explicitly on the time t. This
function can be expanded in powers of a small parameter i, so that

Flzi, yi; SGrap) = Fo + pF, + i*Fy +---.

The functions F1, T2, «.. are periodic with the period 2m with respect to the [A
»s« s) and do not change on simultaneously changing the signs of the variables :
yx, see. y—_-; T]],, ose T}.c Thus, by pOSing .

Sx—orcoswr, m=gisinw (k=1,2,...9 (2j
‘ . d
exransions of the followirg form will be obtained:

Fy=3Cqtn ... 07's cos (Toiys + S qrend, (3)

where the py, o, m are integers so that m, - lq,l is even and nonnegati-e.
The coefficients C depend only or the variables Xi1; see X« The first term Fp |
has the particularly simple form i

1

where h is any function of X, ees X while Vi, .e. Vv, are certain constant co-
pfficients. Thus, Fo does not depend on the angular variables Ji, see Jr; W1,
l... wl .

Lo .

% Posing # = 0 in egs.(1l), the integration becomes immediate. In this case,
X1, Py are arbitrary constants. In addition, we have y; = nit *+ ¢y, W = Wt +
* Y« where, again, ¢; and v, are arbiirary ccnstants. The quantities ny are
g:iven by the formula

|

F,=h(x,,...z,-)——%21r,,gl, (14)’
: i

|

{

dF, dh
dz; ~ dz (5)

!
i
i
i
|
|

If the quantity & is not zero but s}xfficiently small, it becomes possible |

| 3 | ' ' T




to formally satisfy egs.(1) by means of certain semiconvergent series of a pure~
ly trigonometric form. These series were specifically studied by Poinzar€. '
However, the series in question are not valid for all the values of arbitrary
constants that enter these series. The difficulty depends on the introdustion |
of small diviscrs of the form

Xpini + Zqw, (s

where p1 and g are integers. Thus, a complete integration of eqs.(l), from
«  the formal viewpoint, has never been possible.

: If the integration constants are so selected that no small divisors of the
above-indicated form exist (for not too large values of the numbers p; and Ch:)
then the integration can be performed by the Lindstedt method.

— __H_;h NN S

'
; If only a single small divisor is present, the Bohlin method will be suc-
cessful.

[ However, if the number of small divisors is greater than unity, a general
' jnethod for performing the formal integration is still required. Nevertheless,
-* by means of convenient transformations it becomes occasionally possible to re-
*' _duce the problem to the Lindstedt case or to the Bohlin case. The theory of j
--minor planets furnishes examples for this. . i

S In the research scheduled by us, it is of importance to reduce, as much as
" .possible, the degree of freedom of the canonical system (1). For-this purpose,
2" -let us start from the equation of partial derivatives

o is 48 wl ¢ S) ;
. : F dy y Yis 35— dﬂ rk) F (xn dz,’ §kr d§ (61:
2+ _where F(x , yl ; T, ) is the characteristic function of the system (1) while
3 F*(x( , Y13 G 3 is a new convenjiently selected function.

A0 Let
S(zi, yi; £k )

a particular solution of eq.(6). In eqs.(l), we will substitute the variablds
s Y13 Sy T by the new variables x; 7, y1¥; & ¥ s ¥, defined by the following

RIS
e ._._4_,“‘_3_.0.. b

quations:
i1 X = dsm 7‘&) y..‘ dS(:c, [ !I:. §k ) ”k) _
5 dy‘ da:. (7\
3 t J
Lo 8%
:(7» §kad8(z¢ ,dy’;; & .'7&)’ e = s (x* ;I!é:""gk o8 _ o
it We will then’ have . ﬁé -
19 -
Nt Fxi, i3 &, 11&) F*(z*, yi*; 5% )
51
52 Ls well as the new canonical system

T P oe sae o




dz* _dF*  dy*  dF* ..

A A ~ A L R ?
dii* dF*  dps dr+ (8)'
9 TdpE e~ Tage k=129 ?

It then is a question of selectirg the function F* in a convenient manner §

so that no small divisors are present in the functior S and so that the degree
of freedom of the new system (8) can be diminished. i

Let us expand S and F* in powers of B by posing

8 =8 +u8 +u'8, +--,
Fé¢=F*t uP*+ y*F ¥4 ...,

Y

and, in the expansions o%‘ the two members of eq.(6), let us equate the coeffi-
i/ cients of u’, of B, of u?, etc.

Setting )
e Fr=F,=h(z;)— 12 v (EL + nb),

i

So=Zziyi + ZEamp, i

.
2 ]éq .(6) will be satisfied for » = O,

l

— i Let us next equate the coefficients ¢° . in the two members of eq.(6).
v Maklng use of the notation (5), this will ; .eld

f
te l

; ,;,,,ZS 2w 5"d ‘+F (=i, yi; Ex, i)

|
i
]

= _2"'k']kd§ + F (xh Yi; §ln ')k) i

o
;0 ‘Then, by means of the formulas (2), let us introduce the variables py, ®, in- J'_]
v stead of the variables §, Tk » This will yield the equation !

g 05, 5y g |

3 o P, —
s -En ‘d yi +2W‘dw1f F, (10)!
ti
' In view of eq.(3), we will have an expansion of the following form for F;:

10

Ly ‘ . F, =3 cos (2p.-y;+2‘qkw;,).

" After this, we can satisfy eq.(lO) by select:mg for S, and for F; - the follow-

50 ing expreqsions. )
| 8, = 2,0 ain (Ep.t/. + Egkwa)
syl 2?-"»6 + Zqan

I s |

|
i
|
|
i
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'

S c0nta:ms no terms enlarged by the integration.

-

F*=3"C cos (Zpiyi + = qrws).

1

l

In ' we have excluded all terms whore divisors (5" ) would be small; these termsf

with small divisors are combined in the sum ", i

|

- A given divisor will be considered small if it is of the order /% or less.:
It should be noted here that the divisors are approximately constant. In fact,

it will be found that thelr variations are of the order of w. ’

After having selected the functions S; and F,* in this manner, we will comd

pare the coefficients of u° in the series expansions of the two members of

eq.(é) This will yield the equation

as,

I+ TG = B, (12)

d
)
by posing, for abbreviation,

: - F+EdF ds, zdF s,

' da; dy; ‘déi dm, |

|

‘ _RdERAS,  §dFRds, ‘

? 2 dy. d; i drp‘ d&; (12)
|

. d*h d8,ds, '
! 222dx,dx,dj.djj ék_ {(d&,)_(a?;);)}‘ e

tea] jwi

J ;
| 4
f For F—.; , we will select the ensemble of the terms of the trlgonometrlc £§
axgans:.on for Fa » whose divisors are assumed as small. After having selected

in this manner, eg.(1l) can be satisfied by a function S whose expansion

j Obviously, we can continue in this manner and thus completely determine th
Trarlous terms of the expansions (9). 1

| Let us investigate the new canonlcal system (8) in more detail. In analogy
to the formulas (2), let us put

. .
Ex* == 04* cos w*, m‘" = o* 8in wy*,

|
|
"I‘he function F¥, expanded in multiples of the arguments yi and u** contains onlsL
grguments with small divisors. Let
|
!

za.m+ Sol' s G=1,2...m)
fel k-l

e the small divisors that are linearly ,independent (where aﬁ“ and ot are
ven integers). If the parameter p is sufficiently small and if the quanti~
ies n; and y are not extremely small (of the order of /U or smaller), we

| : ' , '6 }. g

AW T ' ) uulﬁ'ﬂ:ggi
i A - R
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.. homogeneous expressions with respect to the variables xf and - ofz with inte-

I N
+ gral coefficients. Thus, the degree of freedom of the system (8) or (13) can

éertainly will have m < r * s. All the arguments !
Zpiy* + 2 :

which sppear in F' (x, yif; §f, T ) are then linearly composed of m arguments

r L4 !
Zasj)y‘.* + zag)uk* (i: l, 2, PP m)-

i

il k=1 |

, % * |
Similarly, the partial derivatives % and 7 are mutually and linearly |
A duy i

composed of m.

‘ After this and in view of the fact that the canonical system (8) can be /9
replaced by the system

de dF*  dyX __ dF*
At Sy At T dm

1 (13}
420" aps  dwr__ aF* |
di dp*’ dt d;(}k“

it is obvious that we will have r + s - m first integrals which are linear and
' 1

be lowered to m.
! |
‘ 1
f It is often possible, by means of convenient transformations, to place the!
reduced system in the form (1) and to continue the reduction in this manner un- |
til the degree of freedom becomes zero or one. This will then permit formal in-

tegration of the system (1).

| |

; i

Qection 2

|

Li Here, we will apply the above reduction method to the general problem of
nor planets.

grimarily, it is necessary to bring the equations of motion to the form of
Bq.(1).

Let us consider a minor planet of infinitely small mass, moving under the
attraction of the Sun and of Jupiter. Let us assume that the planet Jupiter
poves in accordance with Kepler's laws in an ellipse with an eccentricity e .

i

| Let x, ¥y, 2 be the rectangular coorhinates of the minor planet in a system

Ef coordinates whose origin is located at the center of the Sun and whose z-axi
s perpendicular to the orbit of Jupiteq% Let r and r; be the radius vectors o

1 1 |

f 7 * :

b
!
1
!
i
i




| ;ihe planetoid and of Jupiter. As unit l'ength, let us ¢ ° :t the semimajor axisf
+ bf the orbit of Jupiter and, as unit mass, the sum of -3ses of both Sun an
- Jupiter, and let us fix the unit time in such a manner . .. the gravitationsl
+ constant will be equal to 1. Let, finally, u be the mass of Jupiter and H the
" angle to the Sun between the radius vectors directed toward the minor planet /10
~ bnd toward Jupiter. Then, the equations of motion of the minor planet can be ;
written as follows:

dz __dF  dz _dF
‘ dt ~ ~dz’ dt  dx
heo dy__dF  dy _dF . (1)
(U dt —  dy dt dy
dz__dF 4o _dF
dt dZ’ dt dz 1

) *:,vhere

17 | . . .

i | F =Fo +I‘F‘,

i9 i X \ .

) Fo=—§(z"+y"+z")+;,

A

2 5 1 rcosH 1

Ve Z2rrcos H + 1t r r

7‘ '

25 tSee, for example, Tisserand, (Bibl.l).]
{ As variables, we will introduce *'canonical elements" defined in the followd
‘8 ing marner: Imagine a moving point of mass one, a*“rected toward a fixed center

- i

= iay a force of the magnitude —J-:a— where r is the distance of the moving point
| r .
& %’rom the fixed center. In this case, the moving pcint describes a conic section
°* about the fixed center as focus, in accrrdance with Kepler's laws. Let us as-
sume that the orbit is an ellipse and that a, e, I, 4, g, O are its Kep!erian
" plements such that a is the semime jor axis, e the eccentricity, I the inclina-
¥ tion, 4 the mean anomaly of the movirg point, g the distance of the perihelion
- to the ascending node, and & the longitvie of this node. The coordinat:s x, ¥,

iv. of the moving point with respect tc the fixed center and i.s veloci®y : um~

ponents x' , 3', 2’ are then certain weli-known functions of tne Kepleii-; ele-

ments a, e, I, £, g, © or else of the canonical elements L, G, ¢. 4 ., . whose
i Ihree first are given by the formulas

L=Va, G=Va(l—s), O=Va(l—e)cos/

i

H On substituting, in egs.(1l), the variables x, y, z, x', ' . by the AJE
‘:’ canonical elements L, G, @, 4, g, 6, the equations will become ‘
" , dL _dF di __dF

" a4’ dt- T dL’

S0 . (2}

. 4¢_dF ag__dF

52 at - dg Todt a6’




de dF de dF

e ST et e ¢

: di—de' di=——de

Since ~he integral of the vis viva in the Keplerian motion is given, we

will have
- 1 ' 12 1 I8 11
F‘,—- 2( +y +2z )'f‘ ZG_Q_I;’.

In accordance with the above selection of units, the mean motion of Jupite
is equal to 1. We will count the longitudes starting from the perihelion of
Jupiter. By counting the time from the passage of Jupiter through its peri-
helion, the mean longitude (or mean anomaly) of this planet will be t. The per-
turbing function F1 is periodic, with the period 2m, wilh respect to the angulan
variables 4, g, 8, t.

e B e e s e

We will first substitute the variables

|
i L, G, 6,

' l’ g, [/

by

’ " ¢, lo—6-—o0
xl::L" '2'91=L_ ’ 59.— -9

|
; py=l+g+0, w,=—g—0, w,=—0
énd then by '

; %, & =g0008w, § =g co8uw,

Yo =@ sinm, 7,=g¢; 8N 0,.

|
It is well known that these changes in the variables retair the canonical form 41§

of egs.(2).

0
{

i Finally, to obtain the form of eq.(l) in Section 1, we will introduce the
?uxiliary variables X and ya defined by the fcrmulas

~ dz, dF
i — i 0N
' V=t G dr”

This will yield the canonical system
da:z. aF dyi dF

dyb di dz,

14_aF, an__ar
dt  dnp at a5’

k=12 (3)

F —f—x,=F°+;¢F,, ) [

| 9 | - :

where |




1
Fo=§“;:_'zn
1

F, = 1 _recosH 1 (4)

Ve! —2r,rcosli+r’ T T

Ordinarily, the perturbing function F; is exvanded in a trigonometric
series in accordance with multiples of the longitudes

$Bito, Ptw, —ute, o

of the two planets and of their perihelions, starting from the node. This ex-
pans1on has the form L i

F, -=..Ac"'c""(sm I) cos [4, (y, + w,) + 1,(y: + wy)

—ji(—o, +w)—7 ' 5]

1f R . . .
=S Aeme™ (?in %I) cos (9, + 1, + 1w, +j3w,),

| :-by setting Ta=i+ 4 —ji—j,.

.

A "‘he differences m - I,hl - l,]zl - ly' are even and 2 O [see Tisserand . .
_ {Bibl.2)]. The expresslons of tne ccefflcla'tq A, as functions of a, had been ; __}

2 ,'giver_l by Le Verrier and Newcomb.

3. . However, it is necessary to introduce the canonical elements x,, P71, znd P2

3. jnstead of the Keplerian elements a, e, I. ' Since the formulas that express x,

3 py, and p2 as functions of a, e, I are given, we obtain

e 0 YiTE gl @
EY guz,‘ e == 1 V‘___L, nd . e—=- L3 0l
AT Vz, 1z, "7 27 a2

3s- By expanding in powers of py, 02, and €', we finally obtain the series
‘:_’ , F, =2F:n'.':.:"'hm ’m("xm?m cos{t,y, + 1,4, +J,0, +J,0,). (5)
Here, 1 and j2 are even numbers; we still have

m, = l]ll + 2k,
m, =|f,}| + 2k;, i

‘
e s i e ot o s s b s

~~
o~
SUONUNIURIN. S0 ISR

:H m =Iil+i2—jl—'i!|+ 2’;;
O m+m, +m,=|i, + i, r 2k,
Yoo - ' ;

s: Where ki1, ks, f, and k are positive whole numbers or zero. |
o~ - |
RN i . N . . . H

10




liaa, n
The coefficients Fi1ﬁéﬁ§)z depend on x; but are independent of xe (% ap-
pears only in F, ). Obviously, we can assume that

1, m, ms, 00 1,m, my, my
P e = Fi i -

Section 3.

We will now apply :che methcd given in Section 1 to the system (3) of the
preceding Section.

In the actual case, we have r = s = 2 and
’,l="2=0’

1
h(z,, z) =§;§_Z:,
)

mz;", n:=l-

Assuming that ¢ = 0, the quantity ny is ncthing else but the mean motion [;g
of thie minor plane: whose motion will thus be of the Keplerian type. \

In Part I of this report, we will assume that n; is not very close to a
~ 'simple rational rumber. Thus, we will first discuss the theory of "ordinary"
. Pplanets.

In this case, the arguments with small divisors are tr~se that are inde-
pendent of y; and ya.

- Let us assume that, in accordancn with the rules laid down in Section 1,
the functions S(%, J; Sxs T ) and F(x; &, T ) as well as the canonical
transmrmation that correaponds to the function S(x,r s Y Ek , To) are formed.
The function F¥(x; s Xy 'k ) is independent of the arguments vy and '72 .. The new
canonical system, formed with the characteristic function F (xk*, >x ’ Th,) thus
will have the two following integrals:

- z,* = const., x,* = const.
. * 3* . .
The variables & , % satisfy the equations

d5* dF*  dn*  dF* '
Wb W eme “

i
After intezrating these equations, we obtain the arguments y1 and ya afteri
quadratures by means of the formulas '

IR “ET‘:_ dxx*

S

i
dy* _ _dF* (k=1,2). ,_}'
|
[

Equations (1) and (2) are known as equations of secular variations.

11




Before proceeding to their integration, it is preferable to make a more
detailed study of the functiops S and F~ as well as of the canonical transforma-
tion which cerresponds to S(%¢, ¥ ; 5x» Tx)e Let us put, as in Section 1,

Ft=F* 4+ uF*+u®F*+ -,
S =8, +u8 +p*8 +---.

First, we have Q_j

1
F*:F = e —— N
B P (3)

2 -
L= D (maye + Enrp).

k=1
- Then, we must put
F*= EF&E}:.;; - e';e'.'"e'."’ c0s (j,w; + 7,005, ([4),
R );
8 =2 ;ﬁr@e 4 'Qf sin (i,y, + 1,9 + Lo, + 1a0), (5 ‘

while excluding in ¥ all the terms where i, = iz = O. We recall that the rela-
tions (6) of Section 2 are still valid, .

X In continuing, it is first neczessary tc form the function F2 in accordance.
with the general formula (12) of Section l. We thus have ;

F;=gz;4 (dS.)S dedsn

dy, dz, dy, ,
P 3(ands,_dreds) (6)
oS dne  dnp d&

-~ Since the form of the functions F, Fr, and S; as well as the conditions (6) of
:, Bection 2 are given, it is obvious that Fa will have the same form as Fy [eq.(5)

in Section 2], with the only exception that, in the conditions (6) of Section 2,
jne must replace m by m + 2. When this is done, F5¥ will be the sum of the terms |
.- of Fz where i; = ig = O; finally, Sz is ohtained, after integration, from the
formula '

En"?l_i:=i’-~F'*'

i

|
analcgous to eq.(11) >f Section 1. !
R We can continue in this manner and thus successively form the functions E,‘
~i Fi, and S;. This will yield ' . [_1_6

1 Fim EF:;.':':}:?.M em emere cos (1,y, +14,y, + Jiy + frw;), (7)

5 i

12 ‘ ‘




s = f
% _ N ptmmmy _i1n " - .
Fi* = X Fgo5.5 ™ "o cos e, +1,001),

. (8)
F:r:t;n;;m B
v o1 1. 52, 51, 0 . . . . .
Sgr=2 i, +im, emTig it {1,y, + 1y, + Ji0; + faw)), (9)

with the conditiocns
'"l =ljl| + 2kn
my =|7,| + 2k,, me and 3, even (10)

m- 265 —2=|i + t— 5 — 5|+ 2k
for F; and Sy, and with the conditions

m, =\|j,| + 2k,
m2=|j2l + 2"2)
w e+ 2—2=1j, +j,]+ 2k

m and }, even (11)

for Fi.
In egs.(10) and (11), vhe quantities ki, ks, and ¥ are nonnegative intsgers.

Obviously, the auxiliary variable xo does not enter the expansions (7),
(8), and (9). )

Let us now pass to the canonical transformation which, in accordagce witn

tge general formulas (7) of Sectiorn 1, corresponds to the function S(%, ¥ ;
&, Tk ). We can write it in the form of

' ,l_z‘*;?f‘?,—f'io! v _.yt.____d_(s—’s*')

dy, ™ ' dzl_;—_ ’ (12)
d(S-—8,) d(§—3
-5 TI0 0, . S,)
Sk Sk dn % — 0t _.—_Z&;_g.l.

On the one hand, we have excluded the relation that yields x - x4 since we no

longer require the auxiliary variable %z and, on the other hand, the relation
¥y2 - y2 = O which shows that

!Iz*==y:='t- (lBj

: This leaves eqs.(12) to be solved with respect to the variables X;, Y13 & 4
(T]k + Obviously, the diff'erences 1 -X1, 1 -7, & - E¥, N - TV can be ex-

panded in powers of 4, e , &, as _well as in muliiples of the arguments yi |
and ys = t. Finally, setting & = oy cos 4, Tk = p¢ sin &, we obtain expan- |
gions of the following form: . i
j 50["'6”;9‘*""9,*'"‘ :;)ns (4" + LY. e +7,0.%). (11;)

13




Here, we have cos for x1 - xi and & - &¥; sin for y1 - 3 and T, ~ T

Moreover, we also have there m; = th + Xy, = [3;[ + 2ka (where k;
and ks are ronregat;tve :mtegers) Also, np and j2 are even in the expansions
forxy - x¢, y1 - ¥i, §1 - EF, and Ty - T while m and j» are cdd in the series

for €, - €5 and & - . Finally, we have

M+ 28 —2=1i, + i,—j, —j,| + 2k £>0 (15)

N . k-3
in tae expansions for x3 -~ x3 and y; - yf‘, but

=Y
v
<

m+ 2i—1=|i, +i,—j, —j,| + 2k (15t

in the expansions for § - Ef and By, - 11*.

IR,

Let us, now return to egs.{1). First, we have a particular soiution in
which the § , T« are constants. This solutior is obtained by canceling the
second terms of eqs.(1). In this solution, we have

‘.El""_‘Eo ’}x‘=§3*=’h*=o i
with § being the root of the equation :

S : d(F*—F* i
AR . ( d:‘ ) 0) (15)!

-~ where, in the first term, we have put
R : nF =5 =p*=0, i

The first term of this equation is an odd function of €' and £} since the /18
N g.neral function F* - Fo_ 1s even with respect to the variables e R f, T]f, E;' s
... T&¥. Thus, the quantity $:e' can be expanded in powers of € - and h. Sy only |
;. writing the term independent of €' ° and 1,-we obtain [see eq.(s)] !

o ’ In the theory of minor planets, we can consider the guantities €', e, and :
t' i '
| 'psln -—-— I as being comparable, in magnitude, with /G (i being approximately =

§= 10'a ). The same is true for P, P2, 01, and p3.

-,

In view of this, for discussing the equations of secular varlatlons (1),
4t is conveoient to put.

!
|
)

|
S EX=EHVEE=ViG+ ) nr=Viy, ¢=Vie, (17
ol 1/'“ g ’ 7t = V;U"» t o= ut
5. i 1 v
1 i

s;\;'« o




and to consider the constants & ard & = £: /f as well as the variables &' , T,
E", T" as quantities comparable, ir magnitude, with unity.

The new variables &', W', &%, T" satisfy the equations

df dH dy  dH

=5 an g as)
&' _dH  dy'_ dH ‘
dty —dy'’ dt, T T dE”

where f
1

j — F* —const. (193

== ' - !

I :

We select the constant such that H is canceled out for € =1 =¢g" =7" =0,
. i

We will investigate the function H in more detail. For this purpose, let ;
us write the expansion of the function F* - F5 in the form of - A9
Fe¢—F =X :;:,@:’::i:'};m!‘ie’;"en*m’&*mz c08 (jyw,* + J,t0,%) ( 20$

"~ with the conditions (11). :

We will here introduce new variables, by putting ,
=5+ V—Ip*=g* eV:“"'k',
U =5 — V1 =g* e V-lop,
By setting alsom =& + By, % = % - By, the expansion (20) can be written
as follows: !

* = ¥ i, m, +, a0 g
F*— P8 = S PRt e sony wip sy o0, (201)

The nonnegative whole numbers oy, By, @z, Bz take only the values that satisfy :
the conditions (11) which here become . '

oy + B, =even,

{ 4 202 = |ay— By + 0y — B | + 2. (22]
i In view of this, we will put, in a.né.logy with the formulas (17),

| ot =Vils+9), vr=Vel +¥),

! @ =Vuo', . Y=V, (23
ifrcnn which, between the variables ¢', ¥, ¢", ¥" and the variables §', 7', §",

", the following relations are obtained: E

15 ' ;




‘v\

- e pes and by expanding in powers of p, we obtain

. aenoting by p.(" ) a certa:m polynomla.l in eg’ of the degree s. Obviously, we

R

-

¢ =85 +V=1y, ¢ =§—-V_1y, j
) o (2)
fp"=§" + V3 1,)"’ gp" o _E" —V 1)". 5

On mtroduclng, in eq.(20'), the expressions (23) as well as the expres- :20
sion € = /He, we will obtain in accordance with eq.(19)

htazt Ja—4 i, m, ) Gat,
H = 3/ (Vi esert st pisios

€ So + ) (G0 + Y)rgTEYh,

I
|
(25)
i
l
where, in Z', we must exclude the term constant in and the terms linear in ¢', i
* » (P", and *" g
In accordance with our statement on the quantity € (on p.14) it is obvious

t.hgt the quantlty (8o eb) can be expanded in powers of € ° and p. By posing

~a 3w -0z, (26)

-0
¢ i

tl:en have po(?) =1, p Y=, =0,

- Therefore, let us expand, in the expression (25) of H the quantity (o + |

}
*q) 1(50 + ) 1 1n powers of ' , ¥', and § and then introduce there the éx- |
E esslons (26) for €8. Finally, let us arrange the expression H in powers of

e ——

s s P, ¥". This will yield

H=HO 4« HV 4 (2 H® 4 ... az‘,,m}](m), (27]
me) '
Hom) 2 H:’ a};-'i-g::::;-’f’.p'wynv wtﬁr‘pnauw"ﬂu. (28 }
o, B, at, g1t

§

The coefficients of this expansion (28) are given by the general formula

= 3 ) ) s g, )

oHm,an e

hhere we have used, “or abbreviation,

ml ﬂ'a, + ﬂu mv ==-a' + /31, m"= a" + 19":

i
~;}; { ' j e a‘ _ﬂ" 7-( = al _p! "N = all___ﬂ". {
1
50 khe whole numbers i, m, o, 81, s in thq sum (29) must take values that satisfy
X 51 he conditions
: 16 j
!
i |
: !
i J
i i
i :
R - . N P




- i

- lations (3.|.)

i>1, m>0, «a>d, >0,

3> 8,
B+ — | ST+ 2i—2=2m + 2— (e, 4§, + "+ ") — 28,

. . ]
The nonnegative integers @ ,
tions

a’+ﬂ‘+a” +:f’2.2, (1"+ ﬁ"étven‘
m+2=|d—g' +d"—p'|+d+ 8 +"+p"+2k (k>0)
where the latter relation is a direct consequence of the conditions (30).

Equation (29) demonstrates that

Hm, m', m" m, m', m"
- ,-—J” == ’ j"

To avoid imaginar;; variables, we will put in eq.(28):

(p' =Q’ eV:i“", lp' = e’ e—V:Im"

@' = eser_Tl W, gl V3 o

from which it follows that ]
: § =¢ cosu', 7 =g sind,

1t ’ .
i § = Q" cos (u", 1]" == e" sin «".

Thus, the expansion (28) can be written in the form

Hom = 3 HES™ gl g'm" cog (o + §'").

m',m, ', 11

: The integrals m', m", j', j" take only the values that satisfy the conditions

|

f m' 4+ m">2,
,n‘n|j'|+ 2k1, m"=lj"|+2k"’
Im+ 2=+ +m'+m"+ 2k

=7 + 7"+ 171+ 15" + 2F,

m" = an even number,

where k', k", k, and X are any nonnega.tive integers. This results from the

Let us, specifically, investigate the furlctlon H°, Form = O we will
1a.ve, because of the cond:l.tions (36), either m =2, j' =0,
=3 =0, m" =2, "= Hence, ‘

HO o Hg:(a) oelg + H&g.ieng.

| : -17 ]

m" = 3" = 0orm 9

(30)

B', o", B" in the sum (28) must satisfy the rela-

(31):'

|
!
(32)
(33)

(3]

(35)

22
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1 fection Le
A
i We now have been returned to the system (18) of Section 3, which is a sys-

: In addition, an application of eq.(29) demonstrates that
HYY = Fughs, Hb® = FidRs. (37§

o We will express these quantities by means of Laplace coefficients. For
this purpose, let us investigate the tenrs of the second degree in the expansion
of the function Fi's These are (assuming ¢ = 0):

U~ S

it : ,0,2,0 1,0,0,2
‘ F5dtdo*t + Fuotse®.

-\ The terms of the second degree of the secular part of the perturbative function,
;. according to Tisserand (Bibl 3) are as follows (assuming the eccentricity and
i the inclination of the perturbing planet as zero):

‘ SLa' ac et —tg2g].
N

i %y setting there a' =1, @ = a = xfz, 9 =1, & = pfezxf,h sin® -%— = p?z:xf an:
> by comparing the coefflclents of the two expressions of the investigated part o
f1, we will find the following formulas:

E_

Fi3Hs = — Figss V2o, S (e

2

(1) 35 the Laplace coefficient calculated with the value a = x~ -«

[ N S
H

s
1

:n yhere c
; Thus, on introducing the notations
I

Va

ﬁ 1 V‘.=—‘VTE‘ 0, ve=+ el (39);
i: ?e will finally have ‘
f i m%""¢'”W” (10)
o

:2F %1th the fundamental relation

'Hi) 1: v, + ¥, =0. (11)

v kem of the type (1) in Section 1. There are no variables in existence that cor-
N pespond to Xy, y1; the variables &, T are denoted here by &', W', &", 1",
19 Finally, the quantities vy and vd' of eqs.(39) and (40) in Section 3 correspond
0 to the quantities W of Section l.
5)

|

These quantities v and W are not §mall vut they are interrelated by the
' T o

v e et . S o e o s BT S 1
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"~ where

identical relation (41) of Section 3. Thus, the small divisors are 1dent1cally
zero, and the corresponding arguments are multiples of the argument 2o’ + 2w", f

Again, the method given in Section 1 can be applied here. The new canoni- .
cal system resulting from this method is readily reduced to »ne degree of free-.
dom., A complete integration of the system {18) in Section 3, from the formal |
viewpoint, is thus always possible by means of trigonometric series with two !
arguments. In Part II of this report, we will return to this integration method.

|

In this Section ), we will integrate eqs.(18) of Section 3 by a less general
but more direct method which is alsc simpler from the viewpoint of numerical '
applicationse.

We will introduce the variables (24) of Section 3, which satisfy the equa—;

tions 12
' dg' —dH | Y d
E‘ —2V—=lgg g =2V—
dyp' ' _ il - (1)
T=—2V— ld(}’"’ Et, =2V— d(p

The function H can be expanded in the form of

' H =Y um Him, | (2]

me=0

Hm — 2 H™ 0ﬂ+£’”i"7-’4’-ﬁ” ey q}vﬂ,q)nanwuﬁu.

~~
W
e e e Nl +

Here,accordlrg to our statements in the preceding Section, the nonnegative
khole numbers o , B', @, B" tuke only the values that satisfy tne conditions

, a'+ﬂ'+a"+ﬂ"_>_2, a"+,8"==even, .

‘; 27n+2=!a’—'ﬂ'+a"_"ﬂ”|+a’+ﬂ'+a"+ﬂ"+2k (&}
’ =Ia'—ﬂ'+a"—ﬂ"|+|a'—-ﬁ'|+|a"—ﬂ"'+ 2’;‘

where k and‘i are nonnega?ive integerse. According to eqs.(28) and (29) in
Section 3, the function H "), with respect to the variables &, ', ¥, 9", ",
is a real and even polynomial of the degree 2u + 2.

Since the formula (32) of Section 3 is given, the function H exhibits a
remarkable symmetry which is expressed by the identical relation

H (’l": ll’j': V’": lp”) =H (‘/"» (P': VI"a ‘P")- (5 4

(©) has the followingvespecially simple form:

The function H




-

(0),,_"1'9 ! l___"_'o’ 1y !
H g PV — 9"V o
‘ In view cof the ce&iitions (4), the numbers o', 8", a", B" assume only the 2'25
following values in H "°:

! ﬂl " pll

]
|

*

SN~ O W
O O =~ NN
N O =N O
RN~ O O

!
|
|
i
3
|
f
i
!
[

— 0 e O = N
O = O = N
S = =~ N O O
== 0 O Q

O OO C
S OO N = O
S = N0 OO
V-0 0 Qe

Ii-lere, we indicated by an asterisk any combinations such that o' - B' =o" - B",
In all these combinations, we have @ - B' =o" - 8" =0,

We will now demonstrate that it is possible to formally satisfy egs.(1) by
expanding @ , ', ", ¥" in powers of b and in accordance with the multiples of
f:he two arguments

1 W=t +y, W=+

Here, we used Y and Y" for denouing two arbitrary constants and v' and V" for
deroting two still unknown quantities.

We then introduce Lwo additional arbitrary constants pp aaa of'e We will /2

Flso put

fo~

Py =g, V=10 Y =g, V1w,
(6)

@y == go VIV, Yy = gp eV,

It is 'conv’enient to consider ¢', ', o", ¥" as functions of the independent
variables %, Yo, @', ¥ inclead or the variable t;. We will then have

|

|
i
i

20 |




1
V_:"da:‘ = VD' + 4D

with the symbolic notations

DV ld rd D

Thus, egs.(1l) can be written as .

r " i d IY _-H(O)
(=¥ D'—y" D"+ v —2U day’ L

'y "Iy , 4 d(H—-HY
(VD+VD4%J¢—2“7W ’
‘ (—9"D"—¥' D'+ ) " = 4(—11;—47@9 '
: D4y D4 o) g SEH—HO)
(V'D'+v' D'+ )Y = dg H

br, still better,

gy V=

_ (v'D'-i-’V“D") (([1"]‘\ — (a/——yo) (l}ofp 2./)'0 éﬂfwﬂ’)
: § H 1 2t ! ' 1 ] (H—HY
| (VD' ' D) (g, W) — (v — ) g, ¥ = 2, % qu)f] )
‘ — (¥'D"+ v' D) (Y= (" — ") " = 2y d(fldw”}']_l\')
:: 1" 7 Vi ' 1y " ,,d H d(o)
: (D" 4 D) ()= ("= ) g — 2 LD

In these equations, we will introduce the expansicns

; ‘
: 9 =g, +ug, +ute, + =3k,
| W=Vt e = S
¢ =@, + gl gy + = Zuty,

Y=+ ety 4 = Tk
! ’l"-‘l"o'i'l“l"l"‘}'.‘"""g'*'"'-E!‘k"'p

R AR AR T

ansions (8) can be determined.
First, eqs.(7) are obviously satisfﬁed for u = 0.
i
i 21

1
i
i
1

ext, we expand the twc terms rf egs.(7) in powers of W. By equating, in the
wo members of these equations, atil coefficlents of the same power of u, we ob-
ain a sequence o." equations by means of which the various coefficlents of the

(73

(&)




By equaiiig the ~vefficients of », we obtain the following eguations:

w
w
vel ”_D"”‘f'-‘l’-)—v'.'f'.#’.=2q~',%f’., ,
9)
(1}
(“D.'+D')(¢' ("')- " L) ‘I,.,__zq.‘_i.l:’_._:_’
L D'—=DWy ) — 7, 7‘.'.",—241".'%5[1’%“-

Let f be any expandable furction, under the form

f=ZCop i igi= g = s0M. (10)

(For abbreviation, we use R = $H7 7' «@”™¥4g57.) The coefficients C may depend
in an arbitrary marner on the two quantities CF\')*B = 05° and ¥ = o§°. Thus,
we can denote by

n
the ensemble of tne terms whers o' - 3" =" - 3", and by /28

17l
the ensemble of the terms where o' - 8" =" - 8" = 0. Finally, we put

B=1—0

Obviously, { is a perloc';c functior cf the two argumez‘te w and w"; [f ] is the
portior .of f which only includes the multiples of the argument W + w"; finally

[[£1] is tne mean va_ue of f, i.e., the term independent of w and w"

. Since the conditions (1) or e¢lse the values of the Table on p.20 are given,
1\‘. is obvious t.hat

[AM=[(HO)] = By p 202+ By S g, v + By 90

v gBLHT]_ _ pd{HY]

1 4

(11)

+ Ho3p ¥, + Hid gy .
1 Thus, eqs.(9) are satisfied by setting ;
¥ = —.oBHY) _ _ d[HY] |
i PN T ey, |
= A — A HGE N — 2 HR, |
i (12)

) - "d(,(’" lp’.’d
= —4Hyy "f'."l"' HyS ooy, - 2o

22
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N

y dEH® (W] d*HW [, ;]

“’(dwd'r Ty, Tdpdy, ¢,
FHY W) | )

@)=

+ gande: Tw T awdin gl

CHO g dHY {54
(=2 s ol e
dede, ¥, T dydy, o,
@RS gy | EHY el
Yagar v tdiae g ‘)

{

In the I there are no terms where the divisor @' - 3' - o" + 8" is -anceled. /29
These terms have been eliminated by the selection ¢f vi and VY.

Since H') is an even polynomlal of the fourth degree in o, W, ¥, a¥, W,
it is obvicus that v} and v{ are linear in eb, P52 s, od° argd that the functions
(127) are rolynomials of the fourth degree in e, @, %, @', ¥ having only
terms of even dimensiones.

Equatlons (121} give only a part of the unkaown functions. The quantitiesf
[*5‘?'1] (1], [9o'], [F¥r] still rerain unkmown.

In what foilows, we will oi'ten find it advantageous to make use of the no-
tations
’ LB
gy 2 SHERE o
ety ’,l.'- —a +p"+a" [‘1"
“qu,a +,§',ﬂ"+,’"

o
CATTRY P \1J a'—3, ﬂn_p-' \
= ",; z (—l'—‘d —d+ ,’u ",

oo 2 1 U Hl e +3'."¢_'_+;:,"
;t}" (pl} ” 2 g——-_,;—__;u_:#n mto

" H’ a’t'a' "u"‘t'ﬂ"
v =5 B

and of other analogous expressicns ¥' [i] and Y' {i} which are obtained from the
expressions (13) by writing everywhere ¢ instead of ¥ and vice versa. Finally,
this will result in four expressions @"[i], #{i}, ¥"[i], Y"{i} by permitting the
1nd1ces ' and " in the above-defined foui expressions.

1

; Thus, let us now compare the coefficients of p2 in the two members of each
of the equations of the system (7). This will yield four equations, of which |
the first reads: , o ?
¥y(—= D'+ D) (Wogh) — (D' + #.D" + %) (¥, p)) ()

=1 Y0, — Y, O'[1] =y, 4,.

4

|

! .

We have set here |
y .

23
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Jp:» [

oAy =( ¥\D'+ D"+ D (Y e e ((Illl (’.‘}’ [L()
’0 1
; *.2l[°‘(11{/1:)
AT =( » Dy D’{.,l)‘arh oLy l|\+2,r':°‘(li]{ ®
¢ By = (—rD"— DT )) e 7K Qi HIEN ’70(;11{{‘(5)
To

Fo By = (— 1\ D'— v D"+ ) () 4 i)
(15)

which are entirely known functions.

The second equation (1) is obtained from the first equation by writing
everywhere *, ¥, B instead of @, ¢, A and vice versa and by also changing the
signs of D' and "D". The two last eyuations are cbtained by permuting the in-
dices ' and " in writing the two first equations.

Primerily, it is necessary to determine the functions [, #11, (&, ¥,
(v, o], (4. H’] as well as the quantities vz and W in such a manner that aL‘L
the terms where @' - B' -~ o™ + 8" = 0 will vanish from the equations (14). This
will yield four equations of which we give the first:

— (D' + v D ) [ ] — v Y,

—a¥HY o Yo d*HM

d'r) d’[’ {'o x] (/ d'r' dU [ o'rhx]

'r’ d‘[H ] M ep'! od [Hl] Y
Ry dg =2 iy g T = [ AL]

Since eqs.{11) and (12) are given, it is easy to demonstrate that this
equation will take the form

—~ (4, D"+ D) [ ] — (L HGS (W, + ]

2a (16)
+ "110.0' [P:‘I"'; G‘fhl] +r )lfjo‘fo =['Y}o ’]°

The first member of the second equation (16), not written down, is obtained by

cha.nglng the sign of D' and D" and by permuting {¥o9}] and [} ¥}] in the first

member of eq.(18). Finally, the first members of the two last equations are /31

obta_'med from the first members of the two first ﬁuatlons by permuting the i

.indlces and " and by writing Irb,o" instead of

. In view of the symmetry of the f‘unctlon H, which is expressed by the identi—

ty (5), it is obvious tha\, the functions A2 and B: as well as AY and BY are

pemmted on permuting @ and to as 1ell as @ a.nd .

: Let us now form the difference of the two first equations as well as of

the last two equations of the system (16). This will yield

N i
- ( VD' ] D)W, 4+ 0] == (W, 4] — [, By, (17)

’ 2

Wk

§ o ey oty nere e




(D PV ) = (AT = [ B,
We now make the statement that the functions [¥5A%], [@hBL], [¥& 2], [@Bl]
are polynomials in @) ¥ and @'¥§ such that the second terms of eqs.(l7 will
cancel out.

It is sufficient to examine the function

(=
e )= [enartns 20507

The function %% {1}, according to the cecond formula in eq.(13), is composed of
four terms. Each of these terms includes, as factor, one of the functions (12t).
The exponents o' , 8", a", B", of the monomials M of these furctions satisfy the
third relation of eq. (4) form = 1, i.e., satisfy the relation

4=l =3+ " W 3 32k, (R, > 0).
For the exponents @', 8', a", B" of the monomials ® of the cther factor (for

A d*HW
example, of the factor . qu dy, , ), we obviously have

2=ld'—g'+a"—p" ) + o« + 3+ "+ 34 2k, (K, >0).

Fer the exponents o', B', a", B" of the monomials M of the product of the two
factors, we thus will obtain

=ld =3 +a"-- 3"+ + 3 ta"+ 32k (k> 0)
or else, since the o', B', @", B" of this latter formula are positive, - [32
6=la'—3' +a"— '] + |« =3 + |a"—p"| + 2F (k>q) . (18)
Let us now con31der the ‘Jgarlthmm derivative of tke function K 2), The
exponents a B, , B" of H and of its logarithmic derivatives satisfy the:
relations (h) for m =2, i.e., also satisfy the relation (18).

In the function [#5A3] where o' -~ 8' = a" - B" = even, we thus have

' 6=4]a'—p'| + 2k (k>0
and, consequently,

o —f =a"—p"=0.
This is the same for the functions [@bB:], [¥JAY], [«¥BY]. i
Thus the second members of ege.(16) are polynomials in gh ¥y and @M. i
Since, in addition, the functions ['-‘m A2]) and [@BL] as well as [M‘A}'] and

t%’Bﬁ'] are permutod on permuting @ and ' simultaneously with @} and ¥, it is i
obvious that the second terms of eqs.\.+. ’ are canceled.

[
“




Let us then assume that the unknown functions [¥5%} + @5¥}] and [vgol +
5¥'] can be expanded in the form of eq.{(10). Then, the exponents in the
monomials # of these functions will salisfy the equatiors

¥, (@4 + ¥ (a"—p") =0,
(@—8)— (a"—p") =0,

from which it follcws that o' - B' =o" - B" = Q, Thus, these two functions
depend orly on the products ¥ and Q¥ , 1.€., they are consta.nts. We can
equate these to zero without restricting the generality since Do and od are
arbitrary quantities.

Accordir.gly, it is obvious that we can satisty egs.(16) by putting- /33
PN (U7 I | (/04
) ’ 'I’Ow ? 7’-Wa

W) = ] =[] = [ 9] = 0. ,

" Evidently, tne quantities [[¥%A2]] and [[¥§A%]] are polynomials in e3, gb¥h i
-~ and @¥¥%'. The degree of thesn po ynomlals is at most 3 s according to what we

- know of the degree of H*) and H'?’. 1In addition, [[tcAgll is divisible by

-. -go¥o and [[¥& AQ]] by "io, since YAz is divisiblc by ¥y, and ¥& A&' is divisible !
) by ¥8. Thus, vz and V' are polynomials of r.he second deggee in &, Wi, W, j
- 1.e., polynomials of the second degree in & s P02 s and P§" . : i

o We then will return to egs.(14). All the terms, except the first, in each.
- equation of tnis system are now known. The known terms form even polynomals

2 of the slxth degree in &, %, ¥, @ s ¥0'; in these polynomials, the exponents

: , B', @", B" of the monomials M satisfy the inequality

a'-——’f’—a"-}-ﬁ"ﬂo

Because of eqs.(1), we give the functions {ig%} {%Va} “o%} {0095} as
even polynomials of the sixth degree ir &, %, *o s 90, ¥ ‘

N It has been demonstrated that the wholly known terms of the first two equa-
- tions of the system (1) as well as the wholly known terms of the two last equa-»
tions are permuted on permuting @ and ¥ as well as @ and ¥§'» Il must be ;
concluded from this that the functions {*o%} and {a) h} as well as {¥'of} and !
{99'¥f] are permuted on permul;in g and ¥o as well as q\? and ¥§'s Moreover, :
{¥oea) is divisible by ¥, and {43} is divisible by @b , {veed] by ¥, and
[ca%’#"} by %',

10 i Let us now f'ompa.re the coefficients of u® in the tw> members of each of th
' equations in system (7). This will yield four equations, of which it is suffi-
cient to write the first:

l

! #o(—=D'+D") (Y, 9,) — (v, D' + (D" +4,) [V, q}]
MR — 1Y, — Y, 0'[2) = ¥, 4.
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IS

Here, we denoted by A/ (B, A§, BY in the three equations not given here) the
wholly known polynomials which are odd and have the seventh degree in &, % R
Yo, @, Vo- The quantities As and By as well as A} and BY are permuted on per-
muting @5 and ¥§ as well as @f and ¥&.

Primarily, we must select the functions [¥o92], [wb¥2], [¥S 93] and [q9'¥]
as well as the quantities v3 and v§ such that all the terms where o' - B' - o" +
+ 8" = O will vanish from eq.(19). This will yield four equations, analogous
to eq.(16). It is sufficient to write only the first:

— (v, D'+ ¥ D") [ s — GHEE L, + 7, W]

+ 2HES 0 s+ W + ) W, = [V, 4] (20)

The first term in the second equation (not given here) is obtained by changing
the sign of D' and D" in the first member of eq.(20) and by there permuting
[¥%o%3] and [W¥2]. Next, the first members of the two last equations are ob-
tained from the correspondlng members of the first two guat:.ons by permuting
the superseripts ' and " as well as the coefficients H3s°® and H3o™.

Let us denote by

JA'M, IBM, SA4"M, XB'M

the expansions of the four functiocns
(¥, 4], [7B) [4:45), [9.B:]
in powers of W, ¥, @, ¥'. The exponents o', B', a",- B" of the monomials
then satisfy the condition :
al_p’_an + p":o'

Let us now form the di.'ference of the two first equations of the system (20)
and also the difference of the two last equations. This will yield
{35

— (7, D'+ ¥ D") (W, p, + o, ] = [, A3 ]— 9, B,
— (VD" + ¥, D)W« ] = [0 A7) — [ B (2)

: The second members of these equations change their signs on permuting @ |
apd t% as Well a.s %'oand s From this it follows that we have no terms whers |
;r ="

Thus, the following conclusion can be drawn from egs.(21): ‘ i

I

H [ .
; Vot ;o 1 '—-B y
i [Wo"’! + ¢, w:] - m 2 d +Bp1 ' (224
: ) 3
27
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,Tas»u-n oy g HpQH e er

| =B g

(Yoo, + o) =-; R

v+
We could have added to the second members of these equations any functions that
depend only on % ¥o and c&!‘to , but such functions can be omitted without restrict-
ing the generality since po and p§ are already arbitrary quantities.

Let us now put in egs.(20): i

IR (LY ,,..z,_U}!{J_A;.'l}, :

: Y, ¥,
These quantities are polynomials of the third degree in e, ®%¥ and @',
Now, egs.(20) can be integrated. On setting, for abbreviat.on, ;

! A'—B !
we AH 2y '

a A"_BM
+ 2B D iy

2'= 4HLY 4' —B" ;
2( " I)’ 1
we find ' [j§
| e GV y
. [‘1’0‘,’!] (11'. + ’;'; y + y 2 —a_;ﬁ 5
| e Ve L s B |
; ['7’0#: (' + "lr)g ”" + "-;2 __'a‘i‘_*_ ﬂi Wt: i
5 N A 1l o 4 (23)
§ [w’om:]_ (, + v")az "'1 .*_“',1112 _an +"p?:mzo . .
e — oW w1 g B' _
["'o Wt] (,, + "'v)!z "'x + ’,1;2 —ti"-i-ﬁ" m.

i
i
!
|
?Zn the sums I , the terms where o' - 8' = o" - B" = O must be excluded.
i
{

According to the above statements on the second members of egs.(20), it is
obvious that X and X" change their signs and that [* g2 ] and [® ‘Va] as well as
¥99f] and [#5¥4] are permuted on permuting % and ¥ as well as @ and .
rom this it follows also that [V¥o%s ] is divisible by ¥ ; i {w¥a] by @ [vaed]

Ty ¥'s and (®$'vd] by &

Obviously, we can throw the ﬁmctiohs (23) into a rational form with the
, 8 |

M,
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denominator (vl + v{')’e , since the numerators are even polynomials of the tenth
degree in &, @, Yo, @, ¥ .

1t is now possible to integrate e s.(19) and to derive from these the ex—
pressions for {¥o®5}, (qb*a} Ho%} ? These functions, respectively,
are divisible by V%, % Vo, /. The two first acpresslons as well as the

two last expressions w:.ll be permuted on permuting qb and ¥o as well as @Y ‘
and '0% Finally, these four functions are fractions whose denominator is (V1 +!
+ i) whereas the numerators are even polynomials of the twelfth degree in &, -

%:*0’ *OO 1

Evidently, it is possible to centinue in this manner and to successively
terminate the various coefficients of the exparsions (8).

It is obvious that W and W are rational in &, ¥y, WV that o, Vi
o, #' are rational and odd in e, P, ¥, @, ¥&; and that the denominators [37
of a!l these rational functions are powsrs of the quantity 3 * vf. E

It is also clear that @ and ¥; as well as @" and ¥ are permuted on per— |
muting @ and ¥ as well as @) and V. |

Section 5.

Below, we will demonstrate several general propositions on the quantities ‘

@)

;md on the functions f
O S . v, (2)

AN AN U AN (3)

Wy LY W e

e e, T el T (4)

YA AN CT AN (5)’

v V4 v, K g

|

ofined in the preceding Section.

I

?a

i .Let us designate as the degree ¢f a rational function the difference in the
idegrees of the numerator and the denominator.
{
1
l

The first proposition is as follows:

Theorem 1, _The quantities (1) which are rational in e, @t and @¥'¥d
(i.e., in eos, poa and pY?) are at most of the degree 2k with respect to e, %,
¥o, @', ¥§. For k =1, 2, 3, no denominator exists. For k > 3, the denominator
has the form (vi *+ V')* where s < 2k - 6. The functions (4) and (5) which are
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}atlonal in e, ®, #9, oy, ¥ are at most of the degree 2k + 1. The denomi- ,
nator has the form (v; * V') where s € 2 - L for the functions (4) and s < :
€ 2k - 2 for the functions (5).

The cemonstration is performed by induction from i to i + 1. Let us, :
therefore, assume that the theorem is true in the case of the quantities (1) i
and (4) fork =1, 2, ... i and in the case of the functions {5) for k = y 2, |
see 1 - 1; let us demonstrate that this theorem still remains true after 1n— }
creasing i by unity.

: A comparison, in egs.(7) of Section 4, of the coefficients of u'** in /38
‘- the two members, will yield four equations of which only the first need be given:

. H(=D' 4 DY Watfiy) — 04D+ #1044, i)
R ~— Vi Vel — Y, O[] = ¥, 45, (6]

i
i
'

U We will first demonstrate that the rational function A.+1 is al most of the de-
: gree 2i + 3 in e, o, Vo, P, ¥ and that the denominator inclades Vi + V{ at
i most to the power 2i - .

In fact, WAl+1 primarily encompasses the terins

: (v, D'+ D" + 4 ) {y, o)
_«ﬂ_j +(¥yD'+ D"+ (Vi) +---+ (v D'+ D"+ v))(¢,). ’ (7) )

'

o According to the assumptions made, these terms are at most of the degree 2i + A
and in the denominator, include v} + v at most to the power 21 - 4.

5 ; Then, the following quantity will be encountered in ¥oAl+: :
4

Y. §
|

I
i
|
YO (8);
]

s‘_“[see the second formula (13) in Section 4]. At most, this quantity is of the
“»  degree 21 *  and the denominator includes the quantity Vi + V' at most to the
30 Fower 21 - Lo i
7 ¥inally, ¥oAj+1 contains terms of the form (to within a numerical factor)

' "'
v l y 1 Uhid 1 u, —l o~ (L W B
U/ U AR q)'_ (p‘_a 1,,,._; 1y i1

-1 (9)

Y- di+ I 4+ mi 40t I (m)
Ay, (g, () S (dgl) T (d gy e

|

|
!
with the condition

i~1

5
i Dklm o+ n+ml )+ me=i+ 1 (10)
kel

!

| 30 | !

|
)
|
|
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and also the condition /79
Sm'+n' +m"+n") +m>2, (ll)
provided that i > 1, which we assume here. The degree of the term (9) will be |
at most
i1 .

N2k + 1) (on, + nj +mj +np) +

k1 {
+2m+2—S(m'+n'+m"+n")=21 + 4. !

In addition, this term has the quantity v} + V{' in its denominator, raised at
most to the power

. i—1
.- D2k —2) (m), + n, + m +nf) =
' k=1
=201+ 1—m)—23(m' +2'+m" +n") < 2¢—4.

1
i
i
l
", Thus, the function A},; is at most of the degree 2i * 3 and, in its de- |
<~ nominator, the quantity vi + V{' enters at most at the power 2i - 4. i
B After this and since (by Section 1) the method of formation of the quanti—i
s ties (1) for k = 4 *+ 1, of the functions (5) for k = i, and of the functions (1)
.+ fork =1 + 1 are given by means of egs.(6), it is obvious that these quantities . -
. and these functions have exaclly the properties enumerated in the statement of |
-~ the theorem. Thus, assuming that the theorem is true in the case of the quanti-
> ties (1) and (4) fork =1, 2, ... 1 as well as in the case of the functions (5)
" fork =1, 2, «eo i = 1, we have demonstrated that the theorem remains true alsq
"' on increasing i by unity. However, according to Sectiorn 4, our suppositions are
exact up to i = 3., Thus, theorem 1 is proved, '

e It is obvious that the functions (2), «.. (5) can be given the following
form: ‘
o SCOS Y gy = 3Om, (12)

i
“ %here C are rational functions in gh¥ and @I¥y. For abbreviation, we will [49
« Bet, in a given expansion of the form of eq.(12),

i
|
|
!
i
|

7‘1 — “l —'ﬂ': jll = all__‘s"’

S=If'+5"l T=171+17"].

Consider any monomial in @b, ¥, @, ¥&. It is evident that, for such a
onomial, the values of S and of T cannot exceed the degree of the monomial.

L ——

Let us study particularly the polynbmials H* defined by eq.(3) in Sec- }
ion'4. For these, we have the frequently used relation: I

S+T<2m+2.

3l |

-
———




B »ﬁhich appears in the second term of eq. (6). We state that, in the monomials it
of this function, we have S < 21 + 1. In fact, the ﬁmction YoA+1 is composed

Y
o

t

bt

[

ot
N
S()
9

50

Since we always have S < T, the following expression is obtained for these polyd
nomials H'® and for their logarithmic derivatives:

S<m+1, T<2m+2.
In view of this, we will demonstrate the following pioposition:

Theorem 2. For the functions (2) and (3), derived in the form of eq.(12),
we will have

‘
j
!
i
|
}
)

For the functions (3), we will have S = 2k provided that k is even and then )nly
in the terms where

\A)

S <2k,

j=j"= 2tk (1IJ

For a function (2) we will have S = 2k if and only if k is odd and then only ¢04
the combination (3', 3") written in the Table (15) below the investigated func-
tion'

i

l

|

g YT (e 1) g1 ‘
Werd vy Worw o 00vp |
I

(=k=1, —k+1), (k+1,k=1), (=k+1, —k—1), (k~1,k+1) (15?
' |

! The proof of theorem 2 is conducted oy induction from i to i + 1. Let us I )

functions (2), and for k = 1, 2, sse 1 = 1 in the case of the functions (3).
make the statement that the proposition remains true also on increasir: i by
tnity.

1

- .hssume that the proposition is true for k =1, 2, «so 1 in the casc of the #Q
e
|
1

To demonstrate this, it is necessary to investigate the function ¥3Al+:

of the parts {7) and (8) and of a sequence of terms of the form (9), miltiplied
by numerical coefficients.. (
t

For the part (7), we have S s 2i iniaccordance with our suppositions.

The term of the formula (9) can also be written as follows (to within a
factor which depends on ¥ and @§'¥d):

W) (m.wx (!/"'m'.’) '(‘I’ tl)',')‘

((p;(,,:'-l) l—-‘ ((,go "’3—1) I—l ((P (p‘_l) l—] (q, n ) ‘_.
(16]

r Sm} ‘P' ..n' m.m" ‘pu_n" dl+-(m'+n'+m"+u”) H(m)
° °

lpo"’o . _‘ —— - oy ¢
dy, (d'r.)'"" @)™ dgey™ @)™

For this term, in accordance with our assumptions and in view of the condi~
‘ 2 | |

|
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tion (10), we have

=1 . .
S<.22k(m’,‘+n}‘+m;+n;")+m+1== ;
k=1 :
=21+ 3—m<. ' 1, sim>1. )

If m = 1 in eq.(16), the order of the derivati-e of '’ will be at least 3.
Thus, in the polynomial which then appears in the second line .f the expres-
sion (16), no terms of the second degree are present. For the terms of the
third degree, we have & = 1 and, for the terms of the fourth degree, S = O (see
the Table on p.20). Th.' form = 1, we will have in eq./16):

i—1
§< D2k(my, +n,+my+n) +1=2i+1.
k=1

Finally, let us investigate the part ¥o¥ {1} of the function VoAis..
According to the second formula (13) in Section 4, this part is composed of fou
terms, each of which is the product of two factors. For one of the factors
which is one of the functicns (2) for k = 1, we have 5 s 2i, For the other
factor, as for H''’, we have S < 2. Thus, in the fur.tion (8), we always haye ‘

the term where 5 = 2 and g' >0, i.e., the term H..'é,ﬂ  and, on the other hard,
in {gh¥}}, the cerms were j' + = ~-2i., However, according tc our assumptions
there are no such terms in {@ *:} [See the second column of Table (15) for

k i.] Thus, we have S < 2i + 1 in the function (8) and also in the function |

r
i
?
f
i
'§<2i + 2. To have there S = 24 + 2, it would be _hesessary to take, in iR ;
i
i
_ |
*oAifl . 1

3

l

In view of this fact, we will have S < 2i in the function [¥5A}+1] where S
a.lways is even.

!
|

Yaxt, in accordance with the method of furmation of the functions (ol ;

; ‘and {¥% @141}, it is obvious that we will have S < 2i in the first of these func-

-, and then 5 £ 21 + 2 in the second function. l

in the function [¥5%; ], the quantity S is divisible by Le Thus, we will
jt. ere have S = 2i if and only if i is even and then only in the cases in which
g o= 3" o= 5, '
{

In the function {V¥5®i+1)}, the terms where S = 21 + 2 can originate only in
Et.he part
| 4HMZS |
| 30'1! 2

: XA

{pa ¥l (17)

f the function Yo' [1) in eq.{6). It is even sufficient to retain, in the

unction [@¥}] of eq.(17), only the term where § o= = -4, However, such a
erm will exist only if i is even. Thus, we will have S = 21 + 2 in the func~
fon {¥o@i+1} if and only if i + 1 is odd and thus only for j' = -(i +1) -1
di"=-(1+1)+1, 4

i
i
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Analogous results can be obtained by permuting, in tne preceding demonstra-
tion, the symbols ® a.d ¥ or the superscripts ' and ".

Thus, assuming that the theorem 2 is true in the case of the functions (2)
fork =1, 2, ... i and in the case of the functions (3) for X =2, 2, eee i -
- 1, we will have demonstrated that the theorem remains true also on increasing
L by unity. Moreover, cur assumption is exact for i = 2. Thus, the theorem /43
is proved.

It is now easy to demonstrate the foilowing p:oposition:

: Theorem 3: For the functions (4) and (5), derived in the form of eq.(12),
i * we will have :
' T<2k+1. (18)

- ‘The demonstration is direct for the functions (5). In fact, we have T =
= S € 2k for the functicns (3), from which follows the relation (18) for the
functions (5).

In the case of the functions (4 ), the proof is condrcted by induction from:
-~ 3 toi+ 2., Let us assume that the relation (18) is satasfied for these func-
;. tioms at k =1, 2, <o i and let us demonstrate that it is thus also satisfied |
: fork =3i+1l. .

[ YRS PSRN

N For this purpose, let us retvrmn to eq.(6). Since the formulas (13) of )

-__Bection 4 are given, we have T S 2i + 3 in the functions # [i] and ¢ {i} which

>~ latter is a part of the function Af{+1. In addition, in the part of Ays+y which

_» }s obtained on dividing the expression (7) by ¥, we obviously will have T <

«. %.21 + 1, The only item to be investigated are the parts of Ajs; which are ob--
tained fror the expressions (9) by omitiing there the factor ¥o. For these

> parts_ in accordance with our assumptions and in accordance with the data ob-

i tained for the functions (5), we will have '

o e

T S R T

: . -1

: . T< X2k + 1) (m + ny+ my +ny) +

To-l Ll .

o +2m+1—3(m' +n' +m" +n")=2i+3.
- ;

S0t
H

.. Thus, we will definitely have T < 2i + 3 for the known terms of eq.(6é), after
.. - having divided them by ¥. It follows from this that the relation (18) is ful-|
© filled for the functions (4) also for k = i + 1, However, this relation is i
fully satisfied for the functions (4) at k = 1, 2 since these functions then are
polynomials of the third resp. fifth degree. Thus, theorem 3 is proved. i
T Below. we will need a more special proposition which we will demonstrate
here:
|

2

ATl

Theorem L: If k is cven, Lo term with §' + 3" =2 - 1 wil] exis't in the
»' function ¥o® and nc term with j + j" = =(2k -~ 1) in the function ¥ .« LL!A

3L ' _ -

E

.
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WA , i.e., in the function %5

For the proof, we put k = i + 1, where i is odd.

It is sufficient to demonstrate that we have 3 + j" # 2i + 1 in the func-
ticns ¥5¢' [i] and ¥oAi+1 which appear in eq.(6).

Moreover, in the function ¥ ‘t>'l (i], we have 3+ 3" #2i+1 since, because
of i beinz odd, we have there S = |j + i"| < 2i,

In the part (7) of the function *Aj+1, we also have j' + j" # 21 + 1 since
we always have there S € 2i in accordance with theorem 2.

To find the terms where j' + 3" =2i + 1 in the part (8) of the function

3 fi} [see eq.(13) in Section 4], it is suffi-
cient to consider, on the one hand, the terms of the functions {?§<P} }, ces
{%‘#3"} where j' + j" = 2i and, on the other hand, the terms of H''’ that depend
on ¥ aud where 3’ + j" = 1. (In fact, for the terms ! 1 that depend on Vo,
we never have j' + j" = 2.) Moreover, according to theorem 2, it is only in the
two fuactions 8@#%? and {@'¥'} that we can ever have j' + 3" = +2i; in the ex-
pression of ¥5% {3}, these ‘unctions are accompanied by factors where j' + j" #
# *1 in accordance with the Table given on p.20. Thus, in the part (8) of the
function ¥$Af+1., we never have j' + j" = 2i + 1. )

‘ Finally, let us pass to the parts {9) or (16) of the function YoAl+1s We
know (p.32) that we always have S < 2i + 3 - m, Therefore, it is sufficient to
consider the two cases in whichm = 2 or 1, '

In the case in which m = 2, it is sufficient to consider the terms of w2
that depend on ¥ and where we have j' + j" = +3. However, such terms cannot
exast in virtue of the conditions (4) of Section L (for m = 2).

In the case in which m = 1, it is sufficient to consider the te of HY)
that depend on ') and where we have j' + j" = 2 or 1. However, in H 1) there is
no term depending on ¥ where j' + j" = +2. 1In addition, the terms of H''’) that -
depend on ¥ and where j' + j" = +1, are as follows:

Hu ) o+ HE30gl”.

Using this expression of B!, no functions 9b¥ and @'#" will exist in the [L5
expression (16). In addition, in the functions Voo and ¥'q" it is sufficient
to consider the terms where j' + j" = +2k. Moreover, according to theorem 2
such terms will exist only if k is even. However, in accordance with eq.(lOS
form = 1, it is impossible that all k can be even since 1 is odd. Thus, in

the parts (9) of the function ¥oAis1, we will never have j' + j" = 2i + 1,

z

i We have demonstrated that j* + j" # 26 + 1 in the wholly known terms of |
eq.(6é), provided that i is odd. It follows from this that J + j" # 21 +1 i
pxists also in the function {¥oi+1} if i is odd. For reasons of symmetry, we |
will also have j + j" # -(2i + 1) in the function {@¥}+,. if i is odd. Thus,
the postulated theorem is proved.

'
1
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.ection 6.

Let us now substitute, in the expansions (8) of Section L, the quantities
%, Yo, @, ¥ by their expressions in accordance with the formulas (6) of Sec-

tion 4. Then, @' and o" take the form of the exponential series e Vg

w'ith real coefficients. The functions ¥ and ¥" are imaginaries conjugate with
¢ and o".

In v1ew of this and in accordance with formulas (24) of Section 3, the
quant.ltles g a.nd E" become cosine series expanded :m multiples of the argu--
ments w and w" and in powers of k. The quantities ' and 1" will be repre~
sented by slne series formed with the same coeificients that appear in the ex-
pa.ns1ons for €' and §".

Let us now introduce instead of the parameters po and pd', two new para-
meters € and €", by setting

&=Vug, & =Vug,. (1)
where €' denotes the modulus of eccentricity and e" the moduius of irclination. .

The quantltles Po and p¢' are comparable to unity. We will consider the
small qua.ntl..les ¢, e", ¢, and /B as being of the order of magnitude of one.

Let us set, in addition
d-'—‘.u(v"-}-t";. ’ - (2)
The quantity 8 is homogeneous and linear with respect to €' ?, e, &2, and Lib

where the coefficients depend only on the paremeter xf. Thus, § is a quantity
of the order of magnitude of two.

Now, since the formulas (17) of Section 3 are given, the general solution
of eqs.(1) of Section 3 takes the form

S*=S+dcosw + ZA o) cos (7 o' + '),
k=1

' @«
i = dsinw + QAL sin (j'w' + f'u"),
' ’ kel

o
%= " cosw' + ZB}?';,‘:'” cos (j'w' + j"w"),
k=)

.
~
W
e e N e e e

n¥=  sinw' 4 2, BEE sin (j'w' + j'w").

k=] |

;

E

The quantity €:¢', defined by eq.(16) of Section 3, can be expanied in powers ;
36
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'3
of e

and u.
The coefficients Ay y-l' and B,?le are of the order of magnitude of 2k +

+ 1. They are rational and homogeneous functions with respect to the gquanti-
ties €' , €, e , vBbe Only even powers of /i are encountered. The denomlnator
is a power 6° of 6 where the superscript s is 2 O and < 2k + 1 - 3 if 3 - 3"

= 4] but is <2k + 1 -~ 5 if 3' - 3" # +1. Here, the plus sign refers to the co-
efficients A and the minus 51gn to the coefficients B, In view of theorem 3 on
p.3L, we have the inequality

71+ 1" <2k + 1.

1?2add1t10n, 92 if)even in 51 and ﬁl but wdd in &2 a?q Tb The numerator of
Ay ') and By obviously cortains the factor e MR LI T S LIPS
odd and the factor €' €' M1 o ewidl 3¢ o 9" is_even, The other factor in this

2
numerator is a polynomial homogeneous in €' , €, €'°, and .

.

LU

Let us note that we have /47

AR =0, BV=0, (k=12 - )
since we always have assumed
(e ] = [l W) = [0 1) = [, g =

during the integrations in Section L. In addition, the coefficients

AGe*Y (k=1,2,-m)
cancel out at € and e" since the spegial _ solutlon obtalned b¥ setting ¢ = €" =
= 0 must coincide with the solution &7 = §, Ww=0,E=0TH-=0 1nvest1gated

on p.lj,.
' We have seen above that ©), ¥}, ', ¥{' are polynomials ard that the di-

visor Vi *+ V' appears first in the functions [#Jyhl[¢;md’rp;¢ﬂ’0p 3 S Thus,
. A ° Py

the fractional inequalities of the variables §f, ﬂf are at least of the crder
of magnituge of Jve. The {ractl?n?l coefficients of the order of magnitude of
five are A;a ,-2 and Bgs', B-2,-1.

Let us now pass to an integration of eqs.(2) of Section 3. We have alreadj
mentioned that the second of these equations will simply yield

. Y, ¥ =1, (h)

: The first equation is written as
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dy* _ dF*_ s d(F*—F*)

-dt drl‘ ¢ dzl‘ (5)

As derivative of the function F* - F: , we have an expansion obtained from
the series (20) in Section 3 after differentiation with respect to xf. Let us
here introduce, by means of egs.(2l) and (23) of Section 3, first the variables
qf, #¥ and then the variables @, ¥, o" ¥", Next, in analogy with eqs.(19),
(27), and (28) of Section 3, let us put

Le

1 d . a3 '
iz s (F* = Fr =1 Fi3eR) = G = ZumGe, (6)
h 1 m=0

Gom o GRS g g g g (7

The cocefficients G‘,'ﬁ"’ M are polynomials in e . They can be derived by means of ;
the formula

7= 3] () e, @

dx,*

" in complete analogy with eq.(29) of Section 3. The relations (30) of Section 3

are also valid for the expression (8). The nonnegative whole numbers o, 3,
o", B" take only the values that satisfy the conditions

o' + " = even

(9)

2m+2=|a' =3 +a"— 3"+ o'+ § + " + 8"+ 2k (k20)

é.nalogous to the conditiops (31)' of Section 3. Obviously, the function G does
not change on permuting ¢ and ¥ as well as ©" and ¥". i

In the function G, let us now introduce for @ , ¥, o', ¥" their expan-
sions (8) of Section 4 and let us arrangs this series in powers of . This will

yield

G= ﬁ,.m@(m) - i,uigm. (19)
m=0 im0 i

1

In view of this, eq.(5) can be written as

o 1,0,0,0 = !
‘%’; =z d Fygoo —u? 2!‘-907_ (11)
. !
]
i

‘ We will now investigate the function 'g(‘z ' It is obvious that g(” is ever

fwith respect to &, ™, ¥, @, ¥ and that g’ does not change on P‘efmuting %‘

and.¥o as well as @ and ¥« It is also obvious that the furction g is 49

icomposed of two terms of the form : ‘
}
M

s
+
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" rominators of the various terms of the rational function g’
We state that this power is at mosv 21 - 2 for tne

TS AT 7L
m. o m drim' +n im0t Gim)
Ui s lt’/‘, "I’.‘ J ',!"' (d‘[’ )_m (d,,l; )..n (d,,, )-m (dw )ln
multiplied by certain factorials.
satisfy the condition

Zk(mk+n,‘+m,+n") +m=—=i.
k=1

Let us first define the degree of the rational furction g“) .

(12)

The nornegative whole numbers m;, ng , m*, n? |

(13)

Since theo-

rem 1 of Section 5 is given, the degree of the general term (12) can be at mcst

[
3@k + 1) (m, + n +my + 7)) +
k=1
+2m+2—3(m' +n' +m'"+0")=2i+2.

Thus, the rational function g
to @ 3 % tO 3 “.’o *0 .

at most is of the degree 2 + 2 with respect

Let us next investigate at what power the quantity vi + vl enters the de-

form (12) of Section 5.
terms where j' - j" = %1 and at most 2i - 4 for all other terms..

In fact, in accordance with theorem 1 (on p.29), the power of Vi + v{ in

the denominator of the expression (12) can be at most

i
\] L
2_ (2k—2)(m;, +n, +my +n;) =
k=1
=2i—2m—23(m' +n' +m" + n").

, put into the

t
'

Several cases must be differentiated, in accordance with the value of m and

with the order £ of the derivative in eq.(12).

at all.
If L > 1, the power of Vi + v{' will be at most 2i - 4.

IfZ =1 and m > 0, the power of vi + V' will be at most 2i - L.

IfT=1andm=0, the expression (12) is reduced to

,dG@©

,dG®
" ag,

.dgo
+ Tl

L dGO®
§ a-u-,": +

gt

queover, in accordance with eq.(?) and the conditions (9), the function Gt?

39

If T = 0, the expression (12) reduces to G'!’ and will have no denominator:

H
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has the expression

GO =GE0Y + GV (' + ) + GOE 'Y + GRY gy,

In addition, the general formula (8) as well as eq.(38) in Section 3 showed that

0,2 1,0,2,0 i
G.o.oz_dFo.ooo__ dFo,gI;_:o=_Go,2,o i
9.9 dz* dz* %0 -

Thus, the expression (14 ) becomes
GYE° (s + )+ GO (Watpi + 9o W Wo; — o).

“ This is the part of the function g which, in the denominator, could include
~ the quantity v + v{ raised to a power > 2i - 4o However, we know that, in the
denominators of the functions {¥o@;}, {@¥i}, {¥or}, {®¥:1], the quantity v} +

7+ v enters at most at the power 2i - 4. Thus, -he part of the function g( i
- which, in the denominator, could include the quantity v + v{ s raised to a power'-

' >21-h, will simply be -

3‘; <#“G%f][%w”+

SR v, (15)
. e R AR U A ) :
Now, we state that, in the denominator  the f.:ction /51
N f .
! (Wor} + 9, Wl — Lag + 51, (16)

,: the quantity V] *+ V[ enters at most at the power 2 - L. un fact, let us start |
from the first integral

. ®
H= Z.u" H® = const.

T, =0

w of the system (1) in Section 4. The functions R are deflneq by the formula -
w (3) of Section 4. On substituting there the quantities ¢ , ¥, ", ¥" by their|
i kxpansions (8) from Section I and by arranging the series in powers of M, the
fmtegral in question 1s written as

i
1
l
i
!
i
+
1
3
i
1

2 @WHO = ¥ ik = const. (17)

t=( =0

. We can argue on the function n't) 8, we ha.g done above for g( ). It is then
“  pufficient to repls 188 everywhere G " Thus 3 it will become obvious
S0 f-hat the terms of h'"’, in which the quantlty vy + W} may enter raised to a
51 rower >2i - 4, are contained in the expression

*

L
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HYE (W + oW} — (o + i 9D,

Evidently, because of the investigated first integral, tiese terms in which the
quantity vi + vf enter. the denominator raised to a power > 2i - |, must cancel
out and vanish (since ..y are not constant). Thus, it is obvious that, in the
denominator of the expression (16), the quantity v} *+ v{ enters at most at the
power 2i - L.

Let uf,?OW return to the expression (15). We have demonstrated that the
terms of g ' which, in their denominator, could include the quantity vy + wif
raised to a power > 2i - L must necessarily be present in the expression

(18)

oo ([w'., 7, [:I:f”’!) .

O\
c,ho

Ip the monomials M of this function, given the form (12) of Section 5, we have |
j - 3" =41. 1In the denominator, the quantity v} + v{ may enter raised to at
most a power of 2i - 2, in accordance with theorem 1 on p.29. ;

Finally, let us define an upper limit for the numbers T = |j' | + lj"' = ;

= la* -8+ |a" - 8"| in the function g ‘), put into the form of eq.(12) of |

- q.(12) of Section 5, we always have S = |3' + j"| < 2, in accordance with

Seft}on 5. We now state that we still have T < 21 + 2 and that, in the part
{g'"], we even nave T < 21 - 2.

In fact, in view of theorem 3 on p(?é, we will have the following expres-

" sion in the part (12) of the function g '’:

o

T< S2k+1) (my +ny +my +np) +

L

k

]
-

+2m+2—-3I(m' +n +m"+a"):-=22¢{+2.

Thus, in the function g’ thrown into the form (12) of Section 5, we still
have T s 24 + 2,

To go further, we put the expression (12) in the following form:

f o)™ (o, W)™ ()™ ()™ .
|

W)™ (pa ™ (Wi ™ ()"

—~
—
~0

d St +n'Emt ) (Hon)

!

|

t LT @y (T (v
{ -

For each of the functions #® , ¥ , ¥IA", @'V, placed into the form of

heorem 2 postulated on p.32. In addition, in the(fynction on the second line
f eq.(19), we have S < m * 1 as in the function G'*’, because of the second

f 41
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LR

{6

i)
Bt
~ 1

5§

: w’are necessarily located in the part

condition (9). In view of this, we thus have the following expression in the ,
function (1), given the form of eq.(12) of Section 5: i

5< S "k(ka. ngAdmy+n)dEm41=2204+1—m<2¢+1.
k-l

In the part [g )] of the function g , we have J' = j" = even, so that S and T
coincide an  are divisible by L. Thus, we definitely have T € 21 - 2 in the 3
function [g'!’] if i is odd. ' 3

The case in which 1 is an even number remains to be investigated. :

|

: Let us first, generally, derive the parts (19) of the function g'!’ in }
which we could have S 2 2i., Evidently, It is sufficient to consider the ;
parts (19) wherem =l orm =0, Ifi>1 whlch we assume here, it is suffi-
c1en}. to consider the parts (16) where &(m’ + n' + m" + n") 2 1. In addition, |
it is sufficient to consider only the terms where S = 2, i.e., the termsg

|

G5 " (9" + 0°) + GER (" + ).

(see the Table on p.20). Thus, the terms of g(” in which we could have S 2 21
|

Yot ‘P vi
0,1,0 olg o
(o ( ‘u. - ) :
Y . Un)((o(,U N a)(: U l
+ 08:6'0 2 < g m” b "l,;" 4:: b)) i
adbmi Po . P, 1
5,20 W ((u o) (W) (¥ (ps ) (20)
-+ (' . 0 a - iA““Y T '——“'A’A__.‘ - i
e . 0o :
ct+d=i—1 .
, 2 \] 'f¢) ('/' Y ,1) l:” ) (‘P""’d)) 3
'Ag ) ( ) qu’! . .
cfd-x 1

. Now, we make the statement that we have S 7‘ 2i in the function g'!’, pro-
vided thal the number i is even. .

In fact, we then have S f 2i in the first line of eq.(20) asince 3' + 3" ~f
}‘ 21 -1 in the function ¥o9; and since J' + j® # % 2i + 1 4n the function
@'¥;' (see theorem 4 on p.34).

Let us then investigate the general term corresponding to the indices ¢, d
in the third line of eq.(20). In order to have j' + j" = +2i, we must pre- Lj_l_*
Ferve, ir ¥o%s, the terms where ' + j" = +2c and, in ¥o%, the terms where j' 1

j" = +2d, Similarly, to have there §' + j" = -21, it is necessary to retain,
n Po¥s, the terms where j + 3" = -2c and, in PVy, the terms where § + 3" =
= -2d. Moreover, one of the numbers ¢, d is odd since their sum in odd (= i -
L 1). Let k be the 0dd number hers. According to theorem 2 (p+32), we have

$

g + " F+X in V59l and J *+ 3" # -2k in @b¥f . Thus, we have S 7 2i 4in the
b2 !
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trdrd line of eq.(20).
It can be demonstrated in the same manner that S # 2i in the fourth line.

The second line in eq.{20) remains to be investigated. We state that also
there we ve S # 2, prOVided that i is even. In fact, we can argue on the
function h''’ 4introduced by eq.(17), as ?ve had argued above on the function g
It will be found that a?.l the terms of h'"°, where S = 2i, must be located in
the following part of h

0o

B30 Y ((4' ofa) (Fa¥y) (Vo) (rs ) )

A A (22)

Moreover, h'? is = constant. Consequently, we have S # 2i in the expression

(21) and also in the second line of eq.(20).

: We v have demonstrated that S # 2i in eq.(20) and thus also in the func-.
tion g , provided that i is even. !

- It follows from this that T # 2i in the function [g“) J. We have demon-
‘< gtrated above that T < 2i in this function. Therefore, we will still have T s

s 21 - 2 in the function [g'*’]. |
, the parameters pp and pd as |

Let us now introduce, in the function g (1-1)
" well ap tl the arguments w and w", defined on p 20. Then, we can write the fune~,
tion g in the form i

~’ g(:-l) — VG, ,§1 COS (7 w + 7"w") (22)

Fhin
|
with the conditlo{x ’) j" According to hat we demonstrated with respect /%5
to the function g it is obvlous that Gy ,..) is rational ad even, having the,
g ee 21 with respect to &, oo, pd'e The denomlnator of Gy ,..) is of the form
. (v;+v{')' WehavesZO'sS21—L,,,i § - " =1; s 2 - 6if § -j"f'
> 7‘ 1. F‘lnally, we still have |3 « 13" < 21 and even |3 + |3" s 28 - 1 if
NS j J o '
T After all this preparatory work, we can pass to the integration of eq.(ll)l
o iet us denote the constant term of the second member by n. Since

W=yt +y, w "=t + 9",
e will obtain, after integration ,

1ou G,v

|
i
Y =——-n‘+c——-2“’+7,, . 8in (F'w' + " w"), (23?

DU, 4-«*2. e

.; where ¢ is an arbitrary constant. In the sum I', all terms where j' = j" = 0 |
5 must be excluded. ; . !
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The quantity r§,§’.¥" is rational and has the degree 2k with rsspect to e, 05, od's |

;
i
: —~pl
I

It is now a question of expanding the quantity (3'V' + j"w")™} in order of;
magnitude of the irdividual terms. In eq.(8) of Section L, we gave the expan-
gions for V' and v". We know that ‘;

Vo + v, =0,
and we also know that vy and V! are rational in e, pg-, P4 of the degree 2s ’
with respect to &, Po, Py since the denominator is a power of v} + Vv whese |
exponent is < 2s - 6.

Let us now fix j3' and j" by first assuming that S A By - ranging the
series in powers of L, we can then put i

¢ 3

\

!

L@ |
‘ll‘ G(‘l’?‘u i

Y Sy = Wk ¢8R,
sizyiiayyy ¥ T zkzwzuu"l e (2“5
‘ ;
; . |
The quantity 1"(,-,a f.? is rational and has the degree 2k with respect to &, 5, o& .
|

Its denominator is a power of v} + Vv{ since the exponent is < 2k - 4 if §' -

?—j"=1ands2k-6ifj'-j"f1. ggs

. Let us next assume that j' = j" = j. In this nase, we have ;
o . " 1. i 9y + 9 ' + " -l

i (711,7_'_ )=l — B 2 TV, 2 Vs [T

: ‘.] ) julr, + ) { tu vy + v tu v+ + .

Let us then put ’ E

. i

; s iR ®

| . 2‘, -;‘-"—, e W kPR ‘

“ ‘-lll+27 '+ ) k-ljzl-n * (25 4

I
|

|
its denominator is a power of vi + V] whose exponent is s 2k - 3,

\ Finally, let us introduce the quantities €', €" and & defined by eqs.(i)
and (2). In addition, let us put :

2k __ (k)
j'-}” - Jl'ju .

{t.he system (2) of Section 3 takes the form

|
|
l
Jl’hen, in view of egs.(23), (24), and (x5), the solution of the first \‘quaﬁion iri
}
i |

w*=nt+ ot RO sin ('u +7'ul). (26

]
|

his is a formrla analogous to the formulas (3). The coefficients CS{" fu)- are of |
he order of magnitude o'f Zk; théy are rational and homogeneous with respect to|
he quantities ¢ , &, e , and /. Only even powers of /I are encountered. The
enominator is 4 power 8 of & since the exponent s is 2 0 and '

l ' I |
L f :
|

'
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tey
.
|
i

‘0

<2k-—3, ifj' — " =0,

<2k—4, 7 — = 1;
<2k—sé, 7 —5"> 1. L
The integers j' and j" are limited by the conditions [j_]
i
7-1 __7-11 > 0; j" =‘evm‘; 2
0<j +j'<2%—2, i " = 0;
'i!l+|j"|<‘)k if,‘!__i”>0. :
o ,
The numerator of, Gy |C £ contains the factor PEN e:"l if 3 - j" is even and
the fastor €' ¢ en ¥l 5 o ;j is odd. The other factor of this r.umerator

‘ Obviously, the coefficients C,. ,.- and C,. 4-- are polynomials. The fractionall
inequalities of the longitude are at least of the order of magxltuiie of Pl.;c
The firactlona.l coefficients of the order of magmtude of six are Ca2’, G123,
and Cga . The first two coefficients originate in the funct?.op g“’ {the part
(18) for i = 2], The third coefficient has its origin in g

|
|
1
!
is a polynomial homogeneous in € <, em ¢ 3, and M. 5
' i
|
|
|

The quantity n is known as the mean absolute motion of the planet and can
be expanded in the form of

n=n(0)+n(2)+ n“)+ e

in accordance with eq.(11); we specifically have

0,
dFoes.

70 = x‘*—;’, n@ = ~u d;v*

The quantity n‘®*) is of the order of magnitude 2k; it is rational and homo-

genenus with respect to ¢ a e, e'a, and we The denominator of n is a
P?x:er &* wherf the exponent s satisfies the condition? 0<s < 2% -8, Thus,
n are polynomials. In addition, the n (X =1, 2, ese ®)

pbviously contain b as the factor.
i

l After having integrated egs.(l) and (2) of Section 3, we should briefly
scuss the system (3) of Section 2. This system yields the general solution ,
except for the auxiliary variable x which need not be known by introduging
in eqs.( 14) of Section 3, the expressions (26) and (3) of the varigbles N, §1
¥, &F, ﬂ? Thus, the unknowns x;, y» -(nt * ¢), &, T, €3, Ty are expanded[i_
trigonometric series, arranged in multiples of the four arguments linear wit
respect to time:

|

nit+e, !, w=uvt+y, wW=ud't+y".

!

l

E;le coefficients of these trigonometric seriec are series of functions rational
d homogeneous in ¢', &", ¢', and /K, arranged in order of magnitude of the

! L5 | .4

i

M
¥
n

Ckana i v uaEn)

if

. 4 . - § G . " R . sl
R . . B S I g ey S RN CR I A W SN O .wm"s,w?»ﬂgé&*ﬁmﬁéa



ot

terms., Here, only iven pbwers of /B are encountered. The denominators of the
raticnal functions are powers of the quantity 6. However, it obviously is not

necessary to enter into more details of this solution whose gensral nature is
sufficiently well known from the above discussion.

One of the essential points of the theory of ordinary miror planets is the
appearance of the quantity & in the denominators. This quan. .ty will always
have at least an orier of magnitude of two. In reality, the series %'ven in
] " Sections & and 5 are expanded in powers of quantities compa.able to u 672, -
E Thus _gathe discussed integration method basically assumes that & .s nct comparable
to 4™ or still smaller. In Part II of this research, we will investigate the
exceptional :ases in which 6 beccmes too small, so that the term; of the series
used do not converge sufficiently rapidly.

i
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IS

FESEAECH ON THE MOTION CF MINOE PLANETS w1
PART I”

H.v.?.eipel*

In this Part II of the research on the motion of minor planets, we will
discuss the theory cf crdinary planets in a general manner which is applicable
not only to the case of regular planets treated in Part I of this report but
also to the case of planets which we there called "singular®. To accurately
define the difference between regular planets and singular planets, we will give
in this Introduction scme information of a gecmetric rature. These new concepts
will make it possible to discuss here, in rela-ively few words, the main results
obtained ir this secornd part of the research.

By eliminating, from the theory of ordinary planets, th: moduli of eccen-
tricity and inclination, we will obtain a particular solution containing only
two arbitrary constants. The canonical elements.in this solution are pericdic
functions of two arguments linear with respect to time and raving the mean abso-

- lute moiion of the two planets as velocities. The two arguments of slow motion

have vanished together with the moduli. 1In this particular solution, the in-

clination is zero; the perihelion execute; small oscillations about the peri- /2

helicn of the orbit of Jupiter; the eccentricity is small and nearly constant.

3

Let us designate by tnormal eccentricity" the mean value of the eccentrlcluy in
this pvarticular solution. The normal eccentricity, which we denote here by € e,
depends only on the mean absolute motion of the minor pianet. The ratio of € e
to the eccentricity € of the orbit of Jupiter can be expanded in powers of e'?
:,md of b (mass of Jupiter).

After this, we will consider the orbit of an arbitrary ordinary minor

# Received 12 January 1916. !
5
#t Vol,11, No,7.
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planet. To represert the mction of its perihelion, we will define three vectors
OE, OE, and EF. in any fixed plane. The vector OE is fixed and its magnitude is
equal to € The vector OE is variable and, for magnitude, has the osculatory
eccentricity of the investigated general orbit. In addition, the angle XOE is
to represent the longi:ide of the perihelion of this orbit, courted from the
perihelion of Jupiter. Finally, the vector EE will be the geometric difference
of the two vectors OE and OE.

The vector EE will be designated as the "eccentric vectorM, while the
angle XFE will be cailed the "longitude of the eccentric vectorh,

Because of the perturbations of Jupiter, the point E describes a certain
curve in the plane under consideration. This curve is almost a circle abont the
point E as center. The nonperiodic component of the longitude of the eccentric
vector defines a linear argument with respect to time, which we have denoted by

—w'=—(ud't+7%).
The velocity -V’ always is a positive constant of the order of u. /3

- We will also consider the longitude of the node of the general orbit in .
- question, with tlis longitude being counted in the plane of the orbit of Jupiter
-~ - gtarting from its perihelion. The nonperiodic portion of the longitude of the
- node defines a second argument, linear with respect to time. We have denoted
-* this by

,7_ B . -——10"=—(_“”"t+‘7").

: N The velocity -4Vv" always is a negative quantity of the order of u.

In the tleory of ordinary minor planets, the velocity

u(v + )

Camer

is always very sma...l at least of the order of p®. 1If the velocity actually is
of the order of 8%, we have to do with a_regular rlaret. I, conversely, the
velocaty p(v + V") is of the order of u* or even smaller, the planet will be
singular. Singular planets exist for which the velocity u(v' + v") is as small
as desired. There are other planets, completely of the general type, for which
the quantity V' + V" is identically zero. In this latter case, a libration be-
tween the longitude of the eccentric vector and the longltude of the node exists.
In tre case of libration, the tio arguments w and w" are no longer mdependent‘

their sum is a multiple of —2—. To compensate, a new linear argument w is in-
’ e trod"f-ed which can be called the argument of libration. The velocity of this '
; . argument w is at least o the order of u® but can also be infinitely small. ;

w | “Iet us now define the analytical form of the canonical elements in the
s theory of ordinary planets. Let t be the mean anomaly of Jupltez (whose motion:
*+ s supposed to be of the Keplerian type with the eccentricity e ). Let, in ad-'

dition, n be the mean absolute motion of the minor planet. The canonical ele- f

ey e
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ments are trigonometric series of the two arguments
t and nt + c.

The coefficients of these serirs are slowly variable and can be expanded ir /J
powers of certain quantities, comparable in magnitude to the eccentricities, the
inclination, and the square root of the mass u of Jupiter. We express this by
stating that the coefficients in guestion can be expanded in powers of /R. What
remains to be defined is the nature of the slowly variable coefficients C which,
in these exparsions, multiply the various powers of /.

In the case of regular planets and for certain types of singular planets,
the coefficients C are polynomials in cosine and sine of the two arguments W
and w".

For other types of singular planets, specifically in the case of libration
which we mentioned above, it is convenient to introduce ellipitical functions
snv, cnv, dnv and their integrals, in which case the argument v of these func-
tions will be

“z;lg(w' + ")

provided that no libration is present, and
2K
—w

T

in the case of libration (K is the real half-period of the elliptical furctions).
Then, the coefficients C are polynomials with respect to these elliptical func-
tions and their integrals, as well as with resgect to the cosine and sine of the
principal portion of the longitude of the node™. The expansions of the coeffi-
cients C, placed in this form, never fail. In some cases, they are prefevable
over the corresponding two-argumen. 1rigonometric series. In fact, the terms

of these latter series converge too slowly when the velocity of the argument

W + w" resp. w becomes too low, which happens whenever the modulus of the
elliptical functions approaches unity.

In conformity with the program of our research, which has the specific /15
purpose of a qualitative investigation of the motion, we will not give all de-
tails of such expansions. We rather limit the discussion here to indicating the
form of the series and the order of magnitude of their principal terms, In ad-
dition, we will show how these series depend on arbitrary parameters. This more
or less corstitutes the basic contents of the various Sections of this Part II
of our report.

First, in Section 7 we will demonstrate the possibility of the existence

# This principal portion includes first the term -w" which is linear wiin re-
spect to time and then a certain periodic term with the period 2m with respect
to the argument W + w" resp. w. This periodic term is comparable, in magni- |
tude, to 'mity. :

L9 . )




~f singular planets by showing that the divisor 6 (see Part I, p.36) may vanish
for the eigenvalues of the arbitrary parameters.

In Section 8, the general method of Section 1 will yield the means for re~
ducing the equations of secular variations to one degree of freedom.

Next, in Section 9 we will investigate, by geometric means, the nature of .
the general solution of this simple canonical system. Occasionally, the con-
tours defined by the first integral of the investigated canonical system contain
a double-point curve. This curve constitutes the limits of the libration co-
mains mentioned above.

In Sections 10 -~ 12, we will demonstrate that it is still possible to form
the solution of the investigated canonical system by neans of series whose first
terms corverge quite rapidly. In the vicinity of the double-point contour
curve, which forms t'.2 limjt of the libration case, the use of elliptical func~-
tiony becomes indispensable.

Uitimately, in Sections 13 - 15, we will continue the integrations to
finally ootain general series giving the canonical elements of ordinary miror
planets as functions of time and of six arbitrary parameters.

If the values of the arbitrary constants were randomly distributed, singu-:
lar planets would occur rather rarely. In that case, their number would be only
a few percent of the total number of astercids. Planets characterized by libra-
tion between the longitude of the eccentric vector and the longitude of the node
would be even less likely to occur. Nevertheless, it is well possible, because’
of the resistance of space, which probably has been much greater in the past, 16
that the values of the arbitrary constants have undergone changes and that they
thus had tended firally to satisfy the conditions of singular planets. In fact,
the libration centers correspond exactly to the miniimm values of the total
energy (denoted by -F) if we vary the value of the parameters which we denoted

‘by he It is well rossible that a study of the distribution of the values of

the arbitrary constants in the theory of motion of minor planets may lead toward

" -the discovery of this mysterious resistance. However, before approaching this

question it is necessary toc investigate the various types of motion and to check
how the solution depends on the arb:n.trary parameters.

Section 7.

; To demonstrate that the minor planets, designated as "singular® planete,
m;ight actually exist, we will shcw that the quantity &, or else the quantity
vi * ', may cancel cut. For abbreviation, we will put

= —(2Hs5" + Hed?),
N —(2HGS* + HYYY), , (1
- Hye + HYYR.
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Then, the quantity v} + vf, introduced in Section J4, can be written in the form
of

v, + [ =2(N'g} + N'g*—N). (2)

First, we will give the expressions of the coefficients '6,'5" in accordance
with eq.(29) of Section 3:

1,40 1,0,4,0 1.2.2 1,0.2,2 1,04 1,0.0,4

Hoo = Foo00, Moo = Foooo, Hoo = Foodoe,
12,8 0,2.0 , 1,2,2,0 , 1,1,3,0 . 1,0,4,0

Ho,o == Fz:o.o.o*r 6: (Fo,o.o.O'r 4Fo,o.1,o77(.“ T*‘Fo,o,o.o 'P‘.”)» (3)
1,0,2 2,0,0,2 1,2,0,2

Hgo™ = Fogoa+e; Fogoa

In view of eq.(26) of Section 3 and the first tem in the expansion for the /7
root of eq.(16) of Section 3, we also have .

p(.l) —— F F o,q,o. Il!.!‘ = (p(o")"

It is easy to express the coefficients F}.ﬁ:ﬁ;, o;,",ﬁ;g, l"‘l'o"}'u F%, Flo%f)’ by
means of Laplace functions. To this end, we will retain, in the expansion of
the perturbation fur.:tion [eq.(5) of Section 2] the terms which are independent
of € and of the fou~ arguments y1, ya, W1, ¥2. Below, we give these terms up
to the fourth degree inclusive (excluding the constant term):

FLys0or 1 FEG030) + Fybalel + Foosielel + Fuoaoes +

Moreover, in the Leverrier theory, the following expansion is o:tained for this
part of the perturbation function

em(2)"+ e+ wm(5) s azo(E) ' arm s

where the coefficients depend on uiie major semiaxes a and a'. ior comparirg the
two series, it is neceesary to put, in the latter, :

a=2}, a=1I,

(2) 1:%; - (49:,)

e' e’ + 2 el 9: +

Poom =

4z, —20; 4z, LY XA ’ :

(see the equations in Section 2)e In this manner, a comparison o. the two
berles will yield the following formulas I

4z, Fiooo=(2)9,
! © 4z, Fyods=(01)9, |
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In these expressions, Leverrier makes use of the notations

162} F§3.50=—(2)0 + (4)®,
162 Fiooe = 2(11)9 + (12)0, -
162} F1,000 = (17)°.

The Leverrier coefficients depend on the Laplace functions, over the in- [_8_
termediary of the formulas §

1 1
(20 =30 + b9 = acW,
()0 = Yio 1 Lom
2 ] 8 4 ?
(1) = — 22, y
(12)0 = —q (cm + 260 + éc‘“) ;

(17;(°)=ga'(2d°l + ). ’ ?

0 qn 8 @ a9t w_ adned
b‘ My da”’ c” d ”n ? e“ da" Tt .i

b(i) (1) (1)

where ,C ', e are Laplace functions.

- We will make use of the well-known expansions of these functions. Setting;
_ for the time being, :

‘11 (2n—l)
k= 2 6 ’

these expansions can be written as follows:

1,, O
209 = 1+ 3 baatn,

nel 1

a o
2~c“’==22n(2n+ 1) kaa2=,

; £ 1§
P - 92-6“’=-§2[2n(2n+-l)]‘k,,a"'.

i
|

i In view of this , 1t is éasy- to derive the formulas
1 ,

|
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S
N' = 1622n(2n+ 1) (2n% + 50 + 3) k,a?n-t,

LT

1§ :
N'— 1-6212n<2n+ 1)(20%+ 1 + 3) knatn-!
-
or else, in accordance with the expansion for Y R 5

- (3cm+2¢m+ ,-(n) '

05

(cm M+ - cm)

i

This makes it obviocus that the coefficients of 932 and 06,3 in the expres-
sion (2) for v} + VI' are positive.

Next, to demonstrate that the quantity (2) may vanish in the domain ) i

0<a<l,

1t is sufficient to prove that the quantity N may become positive within this
domain According to eqs.(l) and (3), this quantity N is linear with respect '

to eo. The coefficicut of e is rational with respect to certain coefficients
of the expansion of the perturbation function and remains finite since FIQ:&?S :

function N js
N, =F*338 + F38%3. (1)

Thus, to demonstrate that the quantity N can become positive, it is sufficient
to prove that the quantity N, can become positive and is very large.

i

For this purpose, let us define the values of a or, rather, the values of ;
np = a *¥(ny > 1) for which the function My becomes infinite. ‘
( The quantities Fg'o and ¥ “3p'°’3 are the coefficients of p and of p§ in the
e.xpansmn of the function F‘a R defined by vq.(é) in Section 3. Obviously, we /1
tan put € = O, Then, in the sxpansion of the function S, given by eq.(S) of
,,cction 3, we will have ‘

7—52“0: il+i3=?.l +7.:g
m, + m,=1i + 14| + 2k k>0.

Thus, it is obvious that the wanted poles of the function Ny, considered as a
I‘unction of m, will be

,,1_1%,1 . g=1,23...® (5)

3. . ?

0

-which enters tlie denominator does riot vanish. The independent part of ey in thé

e e o = - R G I P ,‘5,.4}.\«.-,,«,@‘ oy AR la o
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1

and

g+2 :
=1*: =1,3,5... . :
nl q q ®© . (6)‘
In addition, the poles (5) obviously are double whereas the poles (6) are

~ $single,
It is easy to see that

{
¢
1 !

Ny = 3274 (FLg 3100 AT + - i
= !

i

q

is valid in the vicinity of the pole (5) and that ,
: |
L 8 (10,20 ® 1,9,0,2 n 1 !

. Ny= '—a UF g gs2,20 + (F2g.¢+2,0,2) ,————q-_'_—z + - X
."" ! nl—

: P q i
? 3

3 fapplies in the vicinity of the pole (6). %
' g+l

1
H
]

+

ar J Thus , the quantity N, is positive and very large when n; is close to

] +
< g’md also when n; is slightly smaller than —q—a—%—. From this, it can be con-

e

cluded that the quantity N is positive in the vicinity of the pole (5) up to a
v _certain finite distance from this pole and that this quantity is also positive

.'.
atz up to a certain finite distance from this pole.

1
1
|
i
[P,
i
1
i
t

!
~ Whenm is <
R i

o Let us put, -in particular, g = 1. It is well known that the majority of L]’.;
:: _the minor planets is located within the domain :

i
|
i

4

4% ; 2 < n, <3

;- limited by the two first poles (5) and (6). In certain parts of this domain,
» . the q'uf,ntity N is certainly positive; in these parts, we can select the values
vy pf P~ and pd® such that the quantity vy + Vi is canceled. From this, we can
« eonclude that the existence of singular orbits is well possible.

i
.
i
i
g
f
f I
I : E
) ;
1

!

N §ection 8.

o o Let us now return to the o 2l system of the secular inequalities,
: 1 placed in the form of eq.(18) ion 3, i.e., to the equations

S dH  dy __dH

o= e

49 " —_dif ’ a, —-—-a'gy ’ i (1
st d&" dH dy'  dH

e IER w——.

_ & =3y dy T TaE
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i
|

| We first have ' i
i

For H, we have the expansion
H=H® - g HN 4 2 H® + -.. (2)

and, for g , the exoression
Hm) = S HPE ™ o'm o' cos 4/ + 100" (3 )
where '
<4 ! ! r /o3 I .

¥ =g cosd, 7 =¢ sind, (
L)

§" — 9” cos fU", ’;H = e" sin !l)"-

The integers o, m", j' , j" take only the values that satisfy the conditions

m' +m'>2, m' = even,

”;f=ljll+ 2kl’ m"=|7'”|+2k”’ l
2m+ 2=\ +5"| +m' +m" + 2k (5)
=17 7" L+ 171+ 17 + 2k,

where X', k", k, and K are any nomnegative integers.

: The system is of the type considered in Section 1. There are ro va,rlables‘
corresponding to x;, yi; the vanables €& » Tk are denoted here by § ) , E", 5
T". Finally, the quantities vy and W' in the expression i

N H<0>__..2 0t — "’e"' (6)E
correspond to the quantities W in Section 1.

We here have the identical relation

vy + 1 =0, (7)

It is possible to apply the reduction method given in Section 1., For this%
purpose, we start from the equation |

& ds \ s
‘ H(d i 7]:d i > ]’\ ( d.v;n £, :gl (8}

The unknown functions Hy and S are expanded in the form

Ho—HO + Y + 0 HY + ..,
8 = 8O+ u8O 4 (18D 4 ...,

1
HO o HO oa — ,2_ ¢! oe"a

5 ﬁ
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S(o) — glnv + §.’!’2H.

By equating the coefficients of i in the erpansion of the two members of
‘eq.(8), we will find the equation |

S dsm ?
Yo g T v do™ = H®— HY. i
|
‘We then must select, for AR R the part of the function HY) that depends on '
and w" only in the combinafion ' + o", Given the conditions (5), it will be [}I_.}
‘found that H.‘*” thus becomes independent of @ and w"., We then find

|
H‘J’==Ht')la’°9“ + H1.2.2elzene + H&g.len‘ 4 Héﬁﬁ‘oe" + H"):g”e"’, ]E

Hl m‘ m' !

) S = 3 7,”’ + 7"_,n e'm' e"m' sin (7 o + 7"(0") !
i where, in &', the terms with 3 = 3" must be excluded. ;
|

!

o By equating the coefficients of u? in the expansion of the two members of
» eq.(8), we find ,
V2 !
L o) @) ' |
X L

-
J
_ by putting, for abhreviation,
|
oo . dHBFSH  dHOJSH

0 go 4 SHVISY  dHNASY v, @S »7dSY *
M HO=HO+ o G + G5 @y 2 (d ) 2 {'lr) ,
o dHYASY  dHDASY s AL

~ ar—ay 2+ 2 (aw) * 3 (@)

\,H:

I
39 For H*a) , We must select the part of H?® that depends on & and w" only i}l e!
: combination @' + w", Now, in forming this part, it will be found that H* is |
;- independent of @' and w" and tha: Hy®) is just simply a polynomial of the third
. degree in "2 and p"™. 11 not write down its expression and also not the J
40 ressicn of the ftmction s'®) wich is a polynomial of the sixth degree in g'
w M, ", M" with certain symmetry properties.

|

|

I It is necegsary to investigate also the function H(a) + By equating the co+
v pfficients of p° in the two members of eq.(8). we find

|
. |
‘r ' v, dS(?)+ .a‘tg_‘;)my(a)_ H® (91’
‘: with the notation ‘ '

| 56 ' ' |
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dHM 8™ n dHWIS® dHPIS® JdHDJSw '
d§' dif &’ dy" ay dF dn" dET {
}(i’_[f_g) dSte  JrHM d,j(l)dS(l) 1d2HM (d S0 .
2 dg* dn') + dg'dE" dr,-’~ Er/" 27dEm (dt)”)

__1a*HY (dS’”\’ d*HE dio>0d8Y  14*HY (d S
2 dys \aF) ~aydy dF 4¥ 2 v (2e7)

 [d80dSH  dgndse dsvds: | dsvdse
AF dF df dy T dE HFJ’}!"{/"‘E;;'T}'

hccording to_the rules given in qectlon 1, we must ecuate the quantlty H(a) to !
the p?rt £ B3 that depends on &' and w" only in the combination o' + w"
For H* , we find an expression of the following form: ;

H® = Q (o, ") + R(o" ¢")e"e" cos (20 + 2w"). (109
‘We will not give the expression of the polynomial Q which is of the fourth de- |
‘gree in o' "2 and p"®, However, it is necessary for what follows to make a more
'detailed investigation of the polynomial R. In rather extensive (buc well |
‘checked) calculations we founa the following expression: |

! . Rig" ¢")=A + B{N'¢" + N'¢"—N}. (11

ey g

'The consta.nts N', N", N, A, and B are expressed by means of }he coefficients
uH,. ,u " which appear in the express:,ons (3) of the functions H *), The three |
first of these constants are given by eq.{(1l) of Section 7. Below, we give the |
.formulas for A and B: |
i |

|

A~ 2HY Y S (— B ELY — 2 Hb HELY
R B - B '
'H} SOHLGTHGS + 2(HLY ) He Y — 2 LV HL M e s
| ;2_2<H;.5°)=-H’*H"~» B+ Iy,

T )

After thus ha?ripg determined the function H'? ) | we can integrate eq.(9) |
which w1ll yieid S'°’+ This function will be & polynomal o. the eighth degreel
in €', 7', §' T" with certain symmetry properties. For our purpose, it is not
necessary t.o give its expression here. '

Evidently, we gap conti{nsa in thia ‘mmner and successively define the
various functions Hy ° and S

In view of this and in accordance with ‘the rw ss g_ven in Section 1, we
will introduce the new variables £}, T, 5}, M} by means of the canonical
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- 0 It .~ - [ '
_trans’ofmation -’ R - b
- e o 2o - !
’ : o ds‘*o 'l‘ 5.:#‘ k,"”:-ds("'it ‘1 § ﬂ") . - °
- i - ;‘" v > df' v * T . d'E'.‘ < A "I 7 o _' (12) °
3 B o _, ds‘so' ‘:- Se- ‘Al;")’“ '11 ds('-n'l‘» E'.'. ’1") 7 » - H
e ST e ay =TT dE : :
By solving for €, i , €%, W, we will Iind that the gitferences € - Ty, |
e WO - T*, §"‘—-§" " - 'ﬂ* vanish at ¢ = O and can be expanded in powers of L.
. ° 73 'The ccefficients of- u! in these series are polynomials of the degree 21 + 1in
- T ?;';- s §£, 31* with certam obva.ous symmetry prope:tles. =
=- L =330 - : =3 T
E " Tne new vanables Sa.tisfy the equa.tlons oo :j‘f o

o 2 fd;", “dH, g.;_.‘_i i, -
LR TS d!, any’ - dt . -dE, - T - . .

. B - o G . L (13
C.ag Camy g dH.. - : _

AP

CEe e dg A T :
e L T ;,{/ L :7'-\7- A -:4 i ' i
T ‘:::The new. charactenstl-.. f'mcfion H (§*, My’ §*, 11*) is obtamed by merely wrltmg
L ,,,§' ey §* T? instead:of §', n, 5" " -in-the expressmn of the function [_I_L_é
ST *(g' » 8™, T")°defined above. . 2 3 :
“ N m It 13—;';3{1‘; i‘e&iiee the canonlcal «systen ()3) _one degree of ?xh-eedom“." _";'tﬁ“‘w
‘Eor ‘this purpose; let us- put N i
T U R=domal, n=dsnal, o
- 3o - . -7 - - )
= . z - :u ” " no_o_o_ s & (lh) 3
22 ; S = ga COS Wy, T,->g; 8i0 w. :
Lo o :.‘rf _The characterlstlc function Hy of the system (13) depe.nds on m and w" omy in
P~ 357 bhe ‘combination w* + wi. Consequent.ly, insr.ea.d of “the’ variables :
H B , % : ‘
. e R o
A ey - . Se-r .- i
J D o : ' ! - # - :
iy : - - i L/ ﬂ.' > 5
. . we car introduce first T | i
AN ‘ e . i 1 ) .
. o - _e?' ‘9?. !
. -'..3' i i i - i 2 2 B ) (15:)
: < L :- w,, »
< and then L ,
N o - - 1, 1, v 1,1, i
oL i §?"'2’9'-’: 51=§93—§e:’-. ) - ;
? ‘ Y] S . _ v R
£ L ; . ) T ge=wy m:. -y, . - . (26)
{ -
¥ <1, | - !
% 5. -1t 48 well known that these two tr&nsfoma.tions retain the canorical form. i
¥ s . i g . N B .
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1

_ The function Hy,. oxpressed as a function of the riew variables A-‘(lé)», does
»._not depend on the secornd-of the angula= variables.
.the first integral

# == const.

':Inladdition, we will have the canonical system with one degree of freedon

T2¥ _dH. dw__dH,
4, do  dt, 1

Corsequently, we will have .

(17)

After integration, we finally obtairn the variable w7 oy means of the equation /17

We recall that H;*:::Ls given by the e:@pansion: -

dm. JH
@,
43 2"

=H® 4+ uHD + @2 B+ ---,

‘)We obviously have here

o, '
e
9 = —-3 x = conss.,

HY = — (V' g+ (N 4 N2)g — H e + HES 0,

HP = a polyncri:l of the third degree in »° and x

HY = Q% e’—¥'+R(e e—z)e (e’—-x)cos2w,

. e @ + @ = e o e" e o o & e = e o ¢ o = .

Hre polynomials Q and kK are the same as thoce that enter eq.(10).
3

is a polynruial in p% and

on . We can also state that H‘ is a polynomial in p° and p°(o°
with constant coefficlﬂn»s that depend on i, )

Section ¢ c.

(18)

The function,
of the degree i + 1, wmse coefficler.ts depend
- 1) cos v -

In a geometric manner, we ‘will now invesiigate t‘le rature of the solutions
of the canonical system (17) in Section 8.

To t.his end, we put

f=pcosw, 7= sin w,

2(H,—QC)

Ty L
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L= (N' + N")i, =u®(N' + N")¢,

- ‘where C is the value of the 1unct10n H, for p = O, The new variables € and T |

_’ ‘satisfy the equations i
A5 do . 4 do . ’

‘)..Z.:-._ N _q=-———. °

"3 &, T dE _ (2)
‘ : [18

B} This system has the integral :

; — O =}, ' (3)
Hhere h is an arbitra.ry‘ const.ant. » :

i“_ .  Let us consider § and 1 as rectangular coord:mates of one po:Lnt of the i

i~ plane. In a given solution of the system (2), the point §, | describes a certair.
$ curve -in .the family of contour lines defined by eg+(3) on varying there the - f;
:9 parameter h. These contours are closed, cover the entire'plane, and generally |
' Qo not intersect. In addition, they are symetric with respect to the axes. ~
Zi For.each value of h, correspond:mg to a maximum or minimm value cf the func~ ] )
"tion &, the centour reduces to a point. These stationary-points, as well as all -
-.'~ ‘the otter singular points (double points, etc.) are obtained by solving the ‘

_equattlons ~
2'7_ B : ] do  deo : 7 S

ztF - “——:- - - —_ e

R h , d§

el .

o First s we have the following soiutioa: -

SRR A AL e e wre e inen a

LY

o

i - E=gp=0.
R The other singular points correspond tc the tacnodes of the two curves
*" ‘ _do
o Tt
L »and
\f' ‘ do
: dw ="

%he curve (1), which is single and closed, reduces, at i

] aHY vy Iy 4 N
o ig =W N+ Nkt N =0,

i .
.; " iThe curve (5) is resolved into four different curves:

the axis of & where sin 2w = 0, cos 2w

6C

= 0, to the circle ~

+1 e

(%)

by w&mﬂ At s o1
Tt
.




the axis of T wherz sin 20 = 0, cos 2w = -1; - - (8)
the circle p° - % = 0 ' - (9).

and, fmally, a single and closed cuie which, at .= 0, is reduced tc the
circle
Ri{g%o*—x)=4 + B{(N'+ N")p*—N"z—N} =0.
(’ ) \(“ 4 4 (10)

The concentric circles (6) and (10) do not coincide. Thus, outside of the
origin, the only other s:mgular points zve the tacnodes of the curve (i) with
the axis of §, with the-axis of 1, ana with the circle p? = .

Let us first study the singular points on the § axis. To cbtain these
points, it is sufficient to solve the equation

[d Q]

de Joos2we= 41

=0,

uhlch yields the dlst.a.nce of the singular points from the ong;m. This equa-
tion has only one root pg since Y-l(*“ is of the second degree in e, Thus, we
either will have two s:mgular symmetrlc points on the £ axis or else no such

poir , depending on whether o- >0 or °g < 0.

Let us now define the singular points on the T axis. Tc¢ find these points,
-it is sufficient to solve the equation - ‘

dd
[Ee—’]MZO-—1= o’

#which has a single root p2. This will yleld two smgu%a.r points on the N axis
"~ or else no such point,depending on whether p-n >0or pq < 0.

The roots P§ and D can be expanded in powers of ¥ since the coeffici ents -
are rolynomials in #. For ¥ = 0, we have .

' Nx4+ N
9}'.=?': N+ N

Thus, the 2quation Dg_ O has a single root x = n'g while the equation D% =0 /20
has a single root x = "’Tl‘ The quantities Kg and can be expanded in powers
of b Forp = O, we have -

l’—x’:—--‘.'z. N - - '
B 3 ] N"

in view of the fact that N'. a.nd N" are positive, it is obvious that p§ has the
same sign as ® - xg and that p'n has the same sign as % - n-'n. 3

Finally, let us investigate the singular points on the circle 0’ =u, To :
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obtain these points, it is sufficient to deterrdne the values of W which satisfy
the equation .

[22], o t
Ld?' ™ : (ll)
In view of the rature of the function Hy, discussed at the end of Section 8,
this equation will have the form )

Ja (. 1) + 13, (x; ) cos 2 =0, (11)

where fo and fz are certain power series in » and ». Obviously, we have

[dH‘,‘"
- d¢® Jgtax
f:(x,0)=~R (%, 0) =u{4d + B(N'»—N)}.

folz, 0)= =—Nux+ N,

Equatior_x (11) is satisfied by four real values of ® between zerc and 27, pro-

vided that the value of # is located between two values xf and Wh' vhich are the,

unique roots, namely, xg of the equation . ;

a0 o :

2. |
cos2o=+1

i ' ‘
[i?]e-f 0. ) | ]

c0s2a=—1

and "‘a of the ecuation

ﬁ‘he quantities »& and M.n" can be expanded in powers of p. Neglecting B2, we L2;

obtain 7 .

7 ~ x" - z" — E
k)

- . 3 N *

. A comparison of the equations that define ng and n.h' with those that yield
pg and py will show that , ,

Q}=x’£ for ux':',
T - — 3
O =2, for x=2x.
“Thus, for » = u} resp. ®» = uj, the singuwiar points on the circle 0® = u coin-

‘cide with the slngular points on the § axis resp. on the T axis.
i Let us meniign, in passing, that the differences u'g - u-'n and »§ - K.ﬁ are
of the order of W . )

‘ In speaking of the singglar points of egs.(2), attention should be drawn
to the perticular solution p° = u which corresponds. to the two-dimensional mo-
tion. The ‘corresponding contour curve is a circle about the origin es center.
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Consideratle analogy exists between tiais solution and the other particular
solution p°> = 0. The investigated circle, in general, is an ordinary contour
which does not osculate any of the other contcur curves. This curve represents’
four double points only for the values of % between #f and »fj, whose arguments
are determined by eq.(11). Let us also note that it Is sufficient to investi-
gate the contours .ocatec_outside of the circle p° = u. For the other curves,
we would actually have Df < 0, which is impossible for the problem in question
here. ’

Next, we will invest igate the variation in the family of curves (2) with
the values of the parameter x. .

Let us first note that the quantities N' and N" are always positive and
that N may be either positive or negative depending on the value of the semi-
major axis cf the minor planet (see Section 7). In the following discussion,
two cases will be differentiated, characterized by the sign of the quantity N.

Let us first assume that _ : o[22
N<o,

-such that ug and K!p are > O while u? _a.nd ’t.h' are < 0, Let us vary »n, starting |,

from very high negdtive values and Eroceed:mg toward very high positive .valves.'

If » < 0 and, a fortiori, » < x; and ¥, no other singular points than the
origin exist (§ = M = 0). Here, the fuiction ¢ has an absolute maximum, (At

" - infinite, ¢ is always negative and very high.) The contour curves are arranged

. about the origin, one outside the other.

As soon as the parameter n exceeds the value » = O, the contour circle
p? = x wild appear; for positive values of #, it is sufficient to consider only:
the contour curves outside this circle. Thesc exterior contour curves remain
ordinary (i.e., withcut double points) for all positive values of . In fact,
the singular points on the § ax. and on the T axis separate from the origin
at x = g ard at #u = u}, remaining always at the interior of the circle p~ = n.’
If this were not the case, the circle p° = % would stop teing an ordinary con-
tour curve for certsia positive values of %, which is impossible cince »§ and
W-ﬁ are negative in the case considered here. Thus, in the case in which™N < 0,
the contour curves that refeg' to our problem are arranged about the origin if
n < 0 and about the circle p° = x if » > 0. On all these curves, there is no
double point. )
! |
, Let us then assume that
! N>o6, B - ;
;such that u'g and K!ﬂ are < 0, while n'g' and uﬁ are > 0. : ' :
, To fix the concept, let us suppose that ue < uh. If the opposite were
‘true it would be sufficient to permute the § a.gd 1 Ixes in the discussion given:
below. i
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If v < n’g, there will be no other singular points than
. . i
: (Pg) § === o' -
since p’é and P2 are negative. In this case, the functior ¢ has an absolute /23
maximum™in (Po.s. The contour curves are arranged about this point without

osculating.

_ If up < n < mﬂ, we will have pg > 0 and pn < 0. Then, the smgular pﬁmts
will be (5 '

(P §=fe@  -7=0.

Thus, ¢ has a min-max in (P, ) and an absolute maximum in (Pg¢). There also is a;
contour curve with a crunode at the origin. This curve has the form

'
!!O i

Figel

Here, we have a series of contour curves about each of the points (Pg) and,
farther down, a series of curves surrcunding the origin and the doubg.e—point

".. .contour curve. For the investigated values of », the special planetary orbit
“  which is approximately circular and corresponds to the point € = M = O obviously

is unstable.

Next, if nn < u < 0, we have DS > 0 and pn > 0, Then, the singular pointsf

'are (P ), (Pg) and

(Pos E=0, n=xon

The function ¢ has a rel ative minimum in (P, ), an absolute maximum in (P ) and .
m:m—ma.x in (Prn) There also exists a contour curve with a erunode in ‘

Fig.2
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points {Pn). This cnive has the form shown in Fig.2. The other contour curves
are ordinary. We have a series of curves aboui each of tne points (Pg) and, /2L
farther down, a neries of curves about the poin’ (Py) as well as a serles of
curves surrounding the double-point contour curve.

. As soon as the parameter n exceeds the value 1 = 0, the cortour circle
p° = n will appear. This is an ordinary contour curve as long as 0 < n < ul,
For these values of #, the general aspect of the contour curves still is thav

shown in Fig.2. However, only the contour curves ocutside of the circle 2=a
ccrrespond to real orbits. ‘

For » = nﬂ, the contour bircle 0? = passes through the singular voint
(Pq) and coincides with the in’.erior part of the double-point contour curve.

Ir Kﬁ < u < u?, the double-point. contour curve will have the form shown

Fig.3

in Fig.3. One of its branches is the circle 0® = u. The function & has maxima
in (Pg) and in (Pp), a relative minimum in (Po ), and min-max in the four double-
p01nts located on ihe circle p® = n. It is sufficient to consider only the
contour curves surrounding each of thke two poinis {P.) as well as the curves
farther toward the bottom which surround the entirs aouble—p01nt cortour curve.
For the 1nvest3r ted values of #, the plane planetary orbit, corresponding to ‘
the circle p° = &, obviously is unstable.

For » = »¥, the contour circle p* = K? passes through the singular point
(P ) and imme ately thereafter separates from the exterior part of the double—
point contour curve.

) Finally, if » > u?, the double-point contour will have the form of the
broken curves shown in’Fig.4. The circle p® = u envelcps this curve completely
outside of this circle, the contours (the only ones to be considered) are ordi—
pany and concentric.

On all of the ordinary contour curves, & and " are periodic functions of tg.
The period relative to t has at least the order of u "%, i.e., is very large.
As soon as an ordinary contour curve more and more approaches a double-point
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P,

contour curve, the perlod will tend toward infinite. On the double-point cor-
tour curves, the point § , T indefinitely approaches cne of the crunodes when t ;-
Ancreases or decieases toward infinite. ‘

Figolq,

; On the crdinary contovrs, located hlgher than the wmin-max of ¢ [i.e., or
the curves surrounding the absolute maximum of the function 2 in (Pg)], the *
‘argument ® varies between two limits. For these solutions, it thus has a sort |
of libration. On the contours, located lower than the min-max of the function -
2, the argument ® has a mean motion. ;

For the existence of libraticn, it is necessary and sufficient at first
‘that the double-point contour curve exist , which is expressed by the condi- ;
tions i

N>o0, z’£<z<x';',

i

and then, that the value of h be greater than the min-max values of the fune- -
“tion 9., Moreover, on the singular curve, the difference of the two values of p.
is generally and at least of the order of b (see the following Section). Thus,
cases of libration occur quite rarely in nature. L?_é

In Part I of this research (pp.2 and 36), we differentiated Lotween regu-
lar orbits and singular orbits. For the former, the quantity

(N'+N"o*~ N"x—~ N

is comparable to unity; for the latter, this quantity is of the order of /B or
smaller, It is now a question which are the contour curves in the discussion
of Section 9 that correcspond to singular ortits. Evidently, these contour
curves (projected onto the plane of the §, M) are located in .e vicinity of
‘the double~point curve up to a dictance of the nrder of /B.

1

5§ection 10.
: We have geometrically investigat:d the nature of the solutions of the
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system (17) in Section 8. Below, we will ;ive the computation of these solu-
tionse. »

By using the definitions of the function ¢ and of the variable ta, giveu
at the beginning of Section 9, eqs.(17) of Section 8 can be written as follows:

do* do dw do .

The function #(p°, w) can Le expanded in the form of

D =00 + @V + P 4 ..., (2)
Making use of the notation
. Af+1W' ’
9 _N' N7 Y (3)
we will obtain j
£ - g |
¥ =4 polynomial of the third degree in p° and :, /27
24 7 ’
2 = {N' 5 + 2B{g* —-q’)} 2 (g®—u)-co8 2w : (4)

+ a polynomisl of the fourth degree in p? and

@(l)

In general, is a polynomial with respect to the quantities

%, ¢ and e’(q?—lv.) cos Zu.
For integrating the system (1), we will use the Jacobi method. Let, thus,’
S(w) be any function satisfying the equation

i Jr (5)
@he* h is an arbitrary constanf. Then, the general solution of the system (1)1
is obtained by means of the relations

i
_dS at,_ _d'8 (¢ )‘
“do’ do dtgdh \

‘ To solve eq.(5) in a general menner, we will throw tlie function h - & into?
th: form !
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- A h—0 (g%, w) = (@ + g™ + (g + - (L + 0 + YR £ --),

‘where c?(” and t“’ are polynomials in p? wiith coefficients that depend on
/--and on cos 2w. These polynomiais must satisfy the identities
- o = — @,
- G+ gR Y — — OO,
) P 4 PO | GO YO = — O,

.............

: ~will then put _ ,
DR - P =g — 290" + ¢,

- For cp“) R v“) , esc, We can seiect polynomials of the first degree in p°. We A

/28
T ¢ =g —2¢0¢", |
P = gD — 2¢7¢",
if;':f'l'hé_coet-'f.icients of the polynomial o' 'are-, guite simply,
IR L s gmeh, gP=@ 9=l
ﬁ 7 “3ince ¢§°’ is irdspendent of h; x, and cos 2w, H‘) is o;uvious that the co-

.. efficients of the various powers of ¢~ in ') and @ are polynomials in h,

" u, cos 2v. In addition, the coefficients of #(1) and of g)“ are, independent
. of cos 2w sines ¥’ (3
"+ in cos ¢ as-is the case for

3

In view of this, eg.(5} can be written as follows:

B . d3)\* as
TN dol '."la';,'*"l’o"a'

-, 'Here, @ and  are functions of w given by the expansions
} Fo=¢0 + ugd +2gd + -,
| = ugl +uteP -
Now, by putting
, ' ‘ . D =g, —g,

o %the correlation between p° and & can be written as
51 ’ :

: ’ a8 - )
o ¢ =g, =nxVD.
; o 68

is indepe?gent of this. Finally, ¥ and 9'%’ are linear
) . ’
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Firally, the correlation between t, and w becomes

at, _ de, 1 dD

dw -4k " oyVpdk’

(9)

- It is of interest to investigate the function D in more detail. ¥e can 122

expand this function in powers of u, by putting

D=D%+ uDM 4 ppm 4 ...

The quantities D!’ are polynomials in h, », and cos 2r. Here, D'°’ and D!

are independent of w. We have, specifically,

. L]
© - w=é‘—h: d_d?h"‘u"'l.

«ee; we prefer tn resolve the function L into two factors and to imy:stigate
specifically the expansion of the particular factor which might cancel out.

- For this purpose, we consider the equation

. - D=-0.

(10)

. where h is assumed as being unknown. For small values of #, eq.(10) admits of -
- a singlz root which can be expanded in powers of p. It is easy to form the ex-
" ‘pansion of this root. Ia fact, it is here a question of finding the value of h,

expressed as a function of w, for which eq.(5) has a double root. From this
follows that

h=o @, w),

' where 5° is the rcot of the equation

a0
g

which can be written in the following form

- daom dow
2(?'—?’)—!4—‘,?'—.“"3?“" - =0.

For small values of u, this equation has a single root p°. The root in ques-

tion, as well as any function of this root, can be readily obtained by means
Lrgrange series. This will yield

1
B

7

;*I' 0(6’) w) = 0(@'\ w) +

51

g1 d (dov, 400, |
+.§W?Fﬁ(ﬁ?ﬁ("7ﬁ‘+‘ |
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i

(11)

of i
(12);
1

1

Instead of giving the rather complicated expressions for D', () p'®)
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In view of the fact that the root (11) of eq.(10) is given, it is pogsible
to resolve the function D into two factors. We will then put

D=u4f.
The first factor has the expression
g =0, w)—h. (13)

By seiting u = 0, we have A = p* — h = D' ? from which it follows that the
second factor f reduces %o unity at B = 0. The quaniities A and f can be ex-

panded in powers of p. Theilr expansions are written in the form of

A=A49 4 0O + 2 g0 +---,
f=1+pf®+ u2f®+---,

It is easily found that

4N = 0N (&),
‘ LB 4 0m) = 2 @ con 2w
.- +a polynomlal of the fourth degree in u. - (lhj -

midrom  dondom -
(w dr ot 4% | o),

@eP T a7 dg

--It is not necessary to g;ve the expressions for the functions f'!’. It is suf-

ficient to note that f is a polynomial in h, », and cos 20 as well as that [2;

1) i3 independent of w.

We will also require the trigonometric expansion of A. Let {
Ad=dy+ 4,00820 + 4, c08 4w + -+ (15)

be this development. On the basis of eqs.(lh), it is easy to form the coeffi-
cients &, + h, A2, A, ... which can be expanded in powers of i with coeffi-
cients that are polynomials in u, independent of h. The coefficient & is of |
the order of u°, We have verified that the function Hgs) containsg no term.in |
cos 4w, From this it follows that §‘3) and A'®) are linear in cos 2w and that
Ay is of the order of p*.

Later, we will consider the root h(x) defined % the equation

d.-o

hs well as the two roots ® and x" of the equation

ol




- Section 11.

4, =0.
3elow, we give the first terms of tbeir>expansions in powers of u:
h(x) =& + @V (g*) +---,
X =—N:N'"4+--, '=N:N'+
Thus, we gill identically have
Ay=h(x)—h,

dy= (x—x) x—o") u*Vy,

where 7, can be expanded in powers of # and reduces, at 4 = 0, to a constant
which is independent of » and # O. :

Fer convenient values of the constants » and h, the coefficients Ay, and &3
take any values and, specifically, values as small as desired.

To form the general solutior of the canonical system (1), we will start [L ‘
from eqs.(8) and (9). It becomes necessary to differentiate several cases, de--

pmding on the relative magnitude of the coefficients in the trigonometric ex-
pansion (15) of the function A.

In this Section, we will assume that the ratios

i

Z, (1=12,3,...)

are comparahble, in magnitude, with p or are smaller.

We will now define certain typical cases which may occur here and to whlch

.correspond certain limitations imposed on the parameters » and h.

Thus, let A, be of the order of uf. The various typical cases, to be dis-
cussed here, correspond to the variocus values of the whole number ¢. ,
i For € = 0, the quantity » may remain arbitrary; h - h(») must be comparable,
in magnlt.uae, to unity. This is the case of so-called regular planets, treated
an Part 1 of this research.

For ¢ =1, the quantity » can’ take any value, but h - -ﬁ(n) must be of the '
i
i

order of u. ,
I

! In these two cases, the coefficients &, ..., are at least of the order
bf pt.
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Fore =2, 3, L, 5, one or the other of the quantitieg » - »' and » ~ »"
must. be of the order of u®~! or smaller; the quantity h - h(v) must be of the
order of u°. -

In these four cases, the coefficients Ay, ... are at least of the order
of u® since the varlous terms of these coefflcients include one or the other of
the three factors u*o*(0° ~ »)?, u®0%(p® - %), u®, which all are of the order
of 0

It is impossible to have € = & since then the ratio A;:4 would no longer
te small.

. Obviously, it is sufficient to consider in all cases only the values of h
which are < h(x), since the function D must be positive.

We will investigate the six mentioned typical cases as a unit. 33

In 211 these cases, the quantity +D: D:ut can be ezpanded in powers of u.
Thus, the function p° can be expanded in powers of u for ¢ = 0, 2, 4 and in

powers of /i for € =1, 3, 5. The successive terms of the series are polynomi- :

als in cos 2w. We can proceed further and assert that the funcitions
¢ and V(r’—z
can be expanded in the same manner.

To demonstrate this, we will write, on the one hand, the two roots of

eq.(8) in various manners, depending on the sign of o; or of ® - x. Thus, we

put

¢.+VD, )
e’: Po i if q'|>0:

ot={—0.+VD if 9, <0;

! ¢—2+ VD, .

‘l F—r={ S22t >
| | o=aevp ~

i (=G — 20,2+ q0)

! et—z={ —(7, —#)+VD if <7,
g J ,—x——V—ﬁ
|

In these formulas, /D always denotes the positive root.
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On the other hand, we note that the functions
Vipy and V2E—2¢,.2 + 1,

are always expandable in powers of u. In fact, @y is divisible by h smce 13
one of the roots p° reduces to zero with h. Similarly, the function »* -

- 20 % + o is divisible by h - &(x, w) since one of the roots p° reduces to »

as soon as h assumeg the constant value ¢(», w). Finally tiie quotients

Po and 202+ P

h h—®(z, w)

reduce %o unity for p = O.

Let us now return to eq.(9), ty writing it in the following manner:

dutt ¢dpy L 11/1dD
o= TV pa— P ()

Tre function P(w) car be expanded in powers of 4 for ¢ = 0, 2, 4 and in powers
of /i for ¢ =1, 3, 5. The various terms cf the expansion are finite trigono~
metric cosine series of multiples of the argument 2w. Let [P] be the mean value
of the function P(w)., The constant [P] is comparable, in magnitude, to wnity
and can be expanded in powers of 4 for € = 0, 2, 4, and in powers of /i fcr € =.
=1, 3, 5. -

We will put (v being an arbitrary constant)

u t, !N +N"
wa[P] 7=u* e " (2)
_ -1 f
p(w)=;.[EJ(P(¢U)—[P])d¢u. (3)

The correlation between w and w will then be
w—w-—-g:i’(m):(), (14-)

i ~

The function P(w) can be expanded in powers of p for € = 0, 2, 4 and in powers

of /i for ¢ = 1, 3, 5. The various terms of the expansion are_finite trigono-
metric gine serles of multiples of the a.rgument A0, F:Lna.lly, P(w) is o the Qj
p”derofu. if ¢ = 0; and of the order of p° =1 ife =1, 2, 3, 4, 5.

| The relation (4) can be solved by the Lagrange formula. Let N(w) be any
;t'unction of w. We then have
i
l
{

i

?
s i i
I(w) = I (w) + 2 s {d—’l@‘ﬂ)i’(w)m}. (5)

1
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We can replace T(m) by any of the functions
w, @, Ve*—z, E=gcosw, p=psine.
Thus, it becomes possible to calculate the solution of the system (1) of Sec-
tion 10 for the typical cases considered in this Section.
Section 12.

let us now assume that the ratio
is not large and that, in addition, the ratios

are of the order of ¢y or smaller.

Let us consider the typical cases in which A, is of the order of p° with ¢
being a whole rumber. :

For € =2, 3, 4, 5, the quantity » ~ «' or » - »" must be of the order

" of 8¥72 and, at tne same time, h - h(n) must be of the order of uE€ or smaller.

Then, A, is of the order of u* for ¢ = 2 and of the order of u® for ¢ = 3, 4, 5.
The coefficients A, ... are still smaller.

It is impossible to have € = 6 since then the ratio

S
4,

would no longer be small .

In all four cases (¢ = 2, 3, 4, 5) we can throw the function D into the [jé
form :

f

t

D=yt (v —sinw)g=u‘v (l—‘—(-l,sin' w)g,

{

Where ¢ is an arbitrarv constant which can replace h, while g is a function of
differing from zero and expandable in powers of u. Let

} g=g" + pg" 4 ‘,‘sg'(z) + ...

be the expangion of the function g. The quantities g are polynomials in

kos 2w; the guantity g o) always is a constant while g ’ depends on cos 2w
bnly for € = 5,

1
i

U NN = SN

i We do not know the sign of the constant g(°). For ¢ = 2, g(°) has the samé

T




sign as the coefficient A of wrich we know only the analytical expression (see
p.57). Powever, to fix the corcept, we will assume that g, > O, If this were

not the case, it wnuld be sufficient below to consider 1 - ¢ and w + —_— instead
2
of ¢ and w.
Since D must never become negative, it ic sufficient to consider the pogi-

tive values of ¢. In view of this, two cases must be differentizted, depending
on the value of o.

First case: o>+ 1.

In this case, it is convenient to put

l‘,'! =

Q!

and to replace w by the variatle

@

. do
U= B ge————teagariid
Vi—k'sin*w

[}

This will yield :
sin = snu, L3T
COS (v ==cnu,

Vi—Fkisin*w=dnu.

We will denote by K the complete elliptic I integral of the first kind relative
to the modulus k, i.e.,

I3

T
. 8w
V1—Etsintw

0

It is well known that

sn(y 4 2K)=-—snu,
cn(u + 2K)==—cnu, ’

dn(u + 2K) =dnu.

A

i

{

| dutt, ‘@fl’g “’f.. ég-—

! md—;;—-—_.._ Idh dn‘u:F2V dh_Q(u)' (2




“For € = 3, 4, or 5, the quantity ¢, is of the order of p and ¢, - # is of the

Second case: 0<o< +1.

It is convenient to put

kt=u, sinw==Fksin o'

and to replace w by the variable

@ o .
* dw do’
u= T T ’ TSR, .
J Vi —sintew ! V1—Fkisin?w .
° !
This will yield 4 ,
| sin w="ksnu, :3‘8

cosw=dnu,

Vi —sintw=kenu. j

Let K be the complete integral of the first kind, corresponding to the modulus K.
(It should not lead to confusion that in both cases we use exactly the same A
symbols k°, K, u, Q(u), v, W, ..., for denoting certain analogous but different !
quantities.

In this second case, eqs.(8) and () of Section 10 take the form - ;
(1)

=0, + ;1§ Vgkenu,

deit,  edp, 1 dD_ (21)
d_&.-,_.,,.akkcnu 3V di Qfu). ,

The first and the second case can be treated togethér.
Let us note first that o, and ¢, - » are of the order of u’ for € = 2.
order of w° if u - »' is of the order of ue'e; conversely, v is of the order

of u° and ¢, - » of the order of § if it is » - u" that is of the order of Tl
Tn view of this, it is obvious that the functions

PR UV -

] 2, !/9;;:—; and Q (u)

fca.n be expanded in powers of W or /T, depending on ‘'whether ¢ is even or odd.
The various terms of these expansions are polynomials; in the first case (¢ > 1)
with respect to k, Kt , and dn u; in the second case (0 < 1) with respect to k
P.nd k cn u.

' Let us find the correlation between u and t.

i
!
1
i
{

i Let [Q] ve the mean value of the periodic function Q(u). Tre constant [Q]

§
i
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is comparable in magnitude with unity and can be expanded in powers of | resp.
/U, depending on whether € 1s even or odd.

It is convenient to introduce the notations

(29

§l . N il
= ’EQ]’ + const. = ¢**: ZV[Z]AJ + const., (3)
- —1 d
Q) = gy [ (@) (@D an. (L)
1]
The correlation between u and v is written as
u—v—uQu)=0. (5)

The function Q(u) can be expanded in powers of p or /fi. The various terms of
this series are odd periodic functions of i, with the period 2K in the first
case (0 > 1) and 4k in the second case (¢ < 1). Finally, Q(u) is of the order
of p if € = 2, 3, 4 and of the order of u’ =1 if ¢ = 5, <

The relation (5) can be solved by the lagrange method. Let I'(u) be any
function of u. We will then have

1 =1100) + 35 ZolEg M @), (6)
=0 !

Let us study the nature of the function Q(u) in more detail. We have seen’
above that the various terms of the expansion of the function Q(u) in powers
of u or /B are polynomials in k, X, and dn u in the first case and polynomials
with respect to k and k cn u in the second case. To form the function Q(u), ‘
given by eq.(4), we will have to consider, in the first case, the integrals

" u .
u ;
Do, ===} dn2s+ydu, Dy, =-—-] dn?*udu,
b 0

0

é.nd, in the second case, the integrals
C-_x,+1=k’-"“jcn'~"+'udu, Coy= kz‘j cn**udu.

.

0

Denoting by Ly(dn®u) certain polynomials in ¥* and dn®u and by 8y and &) /L0
certain polynomials in k°, we will have for the first case (o > 1) :

E A ° |
: DQ..H w=z j(l"—'k. sin? (U)‘ d(u \'
| ; i
' [} i
‘ = ksin wcos w Lagyi (1 —k*sin*w) + 52.+1fdw ’

[}

7




— k®snucnu Logyr (dnf u) + 62,00 D,

2 28~) kt 23-3
D2.=J(1—Ic’sin’w) 2 dey = ——sinwcosw(l L w) -
251
o
2s—2 . 2&—_—? r
Foyy @ F) Dras 957 (&) Doas

= k*<n wcnudn u Lo (dn®u) + 62, D, + 025 u.

In the second case (0 < 1), by proceeding in an anzlogous manner,denoting b

My(K?en®u) certein pelynomials in K¥¥ and K enu and denotin, by vy and Yy
polynomials in kz, we state that we have

Cﬁ:fl =f(k’——sin’w)’dw
(]

@
=sinccosw Maspy (k% — sin®wy + Y2041 {d(u
{
=ks udnuMo; (k2 en?u) + 72,01 C,,

3 20-1 1 243
Cas ——-f(k’-— sintw) 2 do= Psing | sinw cos w (k* —sin®w) ?
§

28—2 2
o 2 =1 Cre—y

+ 28—

—3
S k(2K —1) Gy

=ksnudnukenu My, (Aen’ud + 2,0, + Jagu

‘To form the expressions of the integrals Dy, D2, Gy, C., it is =opvenient
2d

to introduce the notations

X (u) = aresin {snu) — 2‘;_{ ®,
Y (u) = arcsin (£sn#),

d 17 ,’ 1] K'vl::l
Z(u)= - log iy l/ 7 :_:)

i I e
. e u wV-1 [ KV

[ ="3kKk" T qu leg 9 ( "é}f"“/ ""K'“) ’
i

Here, 8, and 95 are functions well known from the theor of guiipbtic functions.:

c

¥

ertain

i

The functions X(u) and Y(u) have the period 4K while the function Z(u) has the

period 2K.
5 Using these notations, we obviously have
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D, = X{u)

°.

b
tog
C,= {(u), )

and, in i, cordance with the theory of elliptic functions (formulas by Schwarz,
pp:d2 , 62, 63 ),

E
K

C,zZ(u)+(§+k’—l)u.

D,=Z{u) + su,

(Here. E is the complete integral of the second kind. corresponding to the
modulus k.)

Let us now return to egs.(3) and (4).

The mean value [Q] of the function Q(u) can be expanded in powers of u
or /it. According to the above statements, the coefficients of the various
wwers of b or /i are expressions which, in the first case (¢ > 1), have the
form

E
«+ By g+ hipg
and, in the second case (0 < 1), have the form k2

E
a2+ﬂz’i{“

The quantities «,, 8,, v; are polynomials in k and k%, while @; and B2 are
polynomials in k.

The function [Q] * Q(u) can be expanded in powers ¢f u or /i. The various
terms of the series, in the [irst cese (0 > 1), have the form

a, X{u) +b,Z(u) + snucn ulL(dnu);

and, in the second case (0 < 1),

a, Y(u)+b,Z(1) + ksnudnu M (kenu).

Here, L and M are rolynomials in dn u resvm. k en ut a3, b, az, bz are con-
gtan.s; ay, by, i “he coefficients of L are polynomials in k and kX " ; ag, bs
and the coefficients of M are polynomials with raspect to k.

Let us finally return to the general equation (6). Consider a funsiion
(u) expandable in powers of u or /&, where the various terms are polynomials;

79




in the first case (¢ > 1) with respect t- the quantities

. , & FE '
snu, chu, dnu, X(u), Z(u); k, k3, e & (8)

and, in the s=cond case (0 < 1), with respect to the quantities
sau, cnu,dnu, Y(v), Z(u); k, g (gr)

Let us substitute, in this function I(u), the quanrtity u by the varisble v. In
_view of eq.(6) and of the character of th- “unction Y(v) established above, it
is obvious that the function l(u), consi:--ed as a function of v, can be ex—
panded in powers of # or /i, with the various terms being polynomials; in the
first case, with respect to the quantities

i , dnv, X(v), Z(0); k. k2, 25, B o~
. snv, cnv, dnv, (v)! '(0), 1 ”2T{r K; (9)
o and, *n the second case, with respect to the quantities
’ snv, cnv,‘dnv. Y (v), Z(v); k,%- (97
" The furctions (9) and (9') are periodic in v, with the period 2K or LX.

Consequently, it will be possible to expand these functions as well as the
-~ . various terms of M(u) considered as a function of v, in Fourier series in
- tiples of the argument

7 ~ 2+, N'+N" .
S 7 Ll (10)

However, these Fourier series converge too slowly as soon as k becomes close to
.+ unity. It is preferabls to retain the various terms of the expansion of the
. function lI, expressed as polynomials of the functions (9) resp. (9') and to
.~ ‘calculate these functions (9) resp. (9') over the intermediary of the func~
tions 9.

: The elliptic functions sn v, cn v, dn v are expressed, over the intermedi-
‘2ry of the functions 9, by the following formulas:

snvr-a 2K‘9‘(0I9~‘?‘—(§%/t) -
: 3 ‘ \9;(0/1‘)‘9 ('g—l‘l')
o ‘\2x

o ) P e Tl '}

Tap=Yalet - .
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a,(O/r) "\371{ (0/_”,\"(0;1—{;1

,)

3(0/1)3(2K’ (0' )) (LLA—{

dov =

Jw/r)"(zx' ) ""(‘”—’;) (v;;’l/
J,(O,r)o(v /r) 9(0/ )az(vl—-l/

)

For abbreviation, we have put there yian

2K

K,—
—-K—I/-—-l.
These formulas must be complemented oy eqs.(7), writing there only v instead
of u.

Below, we give the expressions for the functions &:

9y (x/7) =1—2gcos 2z + 2¢* cos 4z.c — 2¢° cos bz + ., ,
9, (z/z) = 2¢" sin zx— 29" sin 3x.v + 2% sinbxa—- -, (i2)
Iy(z/7) = 2q"coszr + 2¢¥ cos 3z + S gV cos Sz +---,
Jdi(z/7) =1+ 2gcos 2z + 2¢* cos 4zt + 2¢°cos 6z + - -
—_ 1
ofev=is—}) =
=1 ___q'(e‘.’:':: + e-zz'.-:) + q"(e"'-" + e-iz'n)__,,,'
1 = 1
yopEv=T=) =
= qn"‘(e,,-'a__e—z' .1)_q","(ea:’:r_c—3:‘.1) + ..,
ol yy—5, 1
J,(.’C V—l/—-‘;) =
—_ ﬂlq(e.:':t + c—s'.-r) + qn;.(ea:'.—z + e—zz'n) +---,

Iy (z-'.V—- /_-) -

(13)

=1+gq "e2#'3 - e—28'7) & gier=' T ey ..,

with the notations

P TV -£

Fd
qnemi’—l.__e*l{“, g =c ¥ - e Kv“‘
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By means of all ‘thege fomu;as, the function {9) resp. (9') is always
readily calculated. If k° <%, we have K < K and q < 0.04321. It then is
useful to apply the trigonometric series (12). If, conversely, k¥ > %, then we

have K > K and q < 0.04321. In this case, the exponential series (13) are [u5

to be preferred. Evidentally, it is sufficient to consider there only the
values of v in the domain

0<»<?K.
This will yield

1<e“—e-'f <g-t.

According to the above statements, it is obvious that the functions peri-
odic in v and having a period LK, which enter as coefficients of the various
powers of & or /E into the expansions of the functions 1I(u), remain finite and
well-determined even in the case in which the modulus k infinitely approaches
unity. By putting k = 1, we have the limiting case which separates the first
case from the second case. This will yield

K——'b, K== Q’=0.
e'_c—l’
snv=2Z(v) e
°“”=dnv=;&T¢_—E’
u___ 0
X(v) = Y(u)~arcsln(”+z:,)

The function Il no longer is periodic but asymptotically approaches a valie con-
stant for v = ‘=,

We can then replace II by any of the following functions:

u, o VE’—;-;, §=ecosw 7=psinw.

Thus, it becomes ;x)ss:.ble to calculate the solution of the system (1) of Sec-
tion 10 for the typical cases (¢ = 2, 2, 4, 5) considered in the present Sec-
tiono .

In the first case (0 > 1), the argument w may increase indefinitely and Lh6

possesses the meaa motion g: which is at least of the order of u® [see.
eq.(lO)]

In the second case (0 < 1) libration is present and the argument w rema.ins
82
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L

++~_will be small. Then, the discriminant D can be given the form

s N

enclosed between two limits. Its mean motion is zero.
In the two cases, the period 2m: -g-t‘f-» of “he solution of the investigated

canonical system is extremely long and at least of the order of 2. The period
tends toward infiaite as soon as the laniting case is apprcached where k = 1.

In the second case (case of likration), we can also put k = 0. This will
yield

K=ff K'=«x, ¢g=0;

snv=siny, cnv=cosvy, dnv=1,

X(v)=Y@®)=Z(v)=0.

Because of the nature of the function ’a(v), we also have

Q(v) =0, u=ve,

. In addition, in this entirely pariicular case, we have

sinw =ksino' = 0.

The point (£, ") coincides with one of the libration points P; (see Section 9).i

This leaves a rathor zxceptional case to be treated, by assuming that the i
integration constants » and h take values such that rone of the ratios

will be iarge while all the ratlios

D = u%{cos* 2w + acos 2w + 3)g,

where o and 3 are two finite arbitrary constants which can replace » and h,
while g is a function of w differing from zero for k1 = O and expandable in
powers of p.

In this case, one or tne other of the functions p and /p® - x is of the
83




order of /ii. We now are in the vicinity of the contcur curves represerted in
Figs.l and 3 of Section 9.

It is then expedient to replace w by an auxiliary variable u, defined by
the relation

This again leads us back to elliptic functions. Also in this case, it is pos- .
gible to form the solution of egs.(l) of Section 10. However, a complete ana- -
lytical discussion would lead too far here. :

Similarly, we will not discuss the more special case in which the three
irst ccefficients &, &, & are either comparable in magnitude with % or else
> are small with resgect. to &« In this case, if it can be realized at all, the ,
thre: parameters x;3, ®, and h are quite close to certain special values that
= gatisfy the equations

_ Ay=dy—4,=0.

*_ Section 12.

We will continue the 1ntegrat.10n of the system cf secular inequalities, by
-~ again making use of the conditions given in Section 11.
-7

MK Equation (1) of Section 11 can be written as

k8
dw (N' Nty 2y \
dt~ Plw) = Rlw). . )

The second member of this expression can be expanded in powers of b or /B, and
' ithe various terms of this expansion are finite trigonometric series in cosines :
"~ of multipies of the argument 2w. The constant term of R(w) is of the order

: €

‘ 2+= i 3
of 4 2 ;3 the principal periodic term, namely that in cos 2w, is at least of °

3+

2 %the order of b =

v This equation (1) has been used already for expressing w - w as a perlodic

‘function of a linear argument w. The difference w - w is of the order of p° if
ie = 0 (case of regular planets) and of the order of u if ¢ =1, 2, 3, 4, 5.
!

Let us now pass to eq.(18) of Section 8, by writing it in the form of

“

|
o=
]
g
TR
f~ )
s!m
I
&
[
S
~~
N
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The secord term gan be expanded in powers of u, where the various terms are
polynomials in p° and 02 (p® - #) cos 2v. The character of the foar first of
these polynomials is obtained fiom eqg.(29) of Section 8, after differentiation
with respect to ». We will replacze p° by its expansion 1n powers of i or /b 1n
accordance with eq. (8) cf Section 10. let us note that the periodic part of p?
is of the order of w° if ¢ = 0, 2, 3, L, 5 and of the order of uaz if € = 1.,
Thus, the function S(«) can be expanded in powers of u or /%. The various terms
of its expansion are finite trigonometric cosine series of multiples of 2.

The constart term of S{w) is of the oxder of g +he prineipal periodic term,
namely uhat_ln cos ZW, is of the order of u 1f =0, 2, 3, 4, 5 and of the
order of w’¢ if € = 1.

Equation (2) can be used for determining w} as a function ol t. 1In eq.(5)

of Section 11, we will then substitute S{w) for NM(w). Thus, gt“ appears as a
trigonometric series, ordered in cosines of rmltiples of the linear argument 2w.
Let /49

u"

" . be the constant term of this trigonometric series. The quantity v" can be ex-

panded in powers of u or /u, where the first term is v{'. Putting

wn_____.(“;r‘ + 7",

where y" is an arbitrary constant, we find after intsgration that the difference
" - w" can be expanded in powers of L or /i, with the various terms being

finite trigonometric sine series of multiples of the argument 2w. The principal
coefficient, namely, that of sin 2w in the trigonometric series of w} - w", is °
of the order of w° if € = 0, while it is of the order of p if € = 1 and of the -

2w ——
order of 4 2 if e =2, 3, L, 5. The ratios of the other coefficients to the

principal coefficient are at least of the order oi u.

After having expressed the differences w - w and w% - w" as periodic func-:
tlons of the linear argument w, it is easy to give the complete solution of :
egs. (1) of Section 3, always remaining within the assumptions of Sectior. i1l. In
fact, we first have the relations (17) of Section 3 which connect the variables,

()

§l*’ ”I*' EQ‘: ']3‘ ‘
to the variables :

gr' ”r' Eu. 71"- (5)

EThen, by means of the transformation (12) of Section 8, these latter variables |
are expressed as functions of the variables
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&, =gcos(w—c]), 7.=gsin(w—w]), )

5i = Vot—ucosw), nt=Vet—zsinw).

Obviously, the variables (L) are of the order of /. They can be expanded in ja:3)
odd powers of /. The coefficients of (/i)d *! in these expansions arz poly-
nomials of the degree 2i + 1 with respect to the variables (6). Instead of p

and /02 - #, we now introduce their expressions as functions of & in accordance’
with Section 11. Thus the variables (L), divid=l by /w, are finally expanded

in powers of u or /B, with the various terms being finite trigonometric series :
of the two arguments w§ and w, which are known as functions of t.

Next, we will integrate egs.(2) of Section 3. We noted akove that the
second of these equations simply yields

¥,* =t (7)

In the first of these equations, we can put

nr=nt+c+y, (8)

where n is a still unknown constant, ¢ is an arbitrary constant, and X is a
perlodlc function with resp ct to the two arguments w} and w. Since egs.(1)
and (2) are given, the equation which will yield the function X assumes the form

1
I

dy dF* )
S(ru)+aaR(w)=—m—n. B (9?

dx
dw,

By writing only the principal terms, we have

"
-8(w) =~éd'—:-~ + -, Rlw)= at

. €
, 2+ =
These terms are, respectively, of the order of # and of the order of w 2.
The terms which are not given here are smaller.

i

: Let us first express the second member of eq.(9) as a function of the
variables (6). In eq.(6) of Section 6, we gave the series

4 dF* dF*  dFgl 1Y o gy, &
i e

me0

uhere the G'*) are certain polynomials of the degree 2m + 2 with respect to the!
‘variables (5). After performing the transformation (12) of Section 8, we will
‘have
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i um G = i;t"‘ Gio,

mm=0 m=0

where G( *) are certain pOlynom als of the degree 2m + 2 with respect to the
varlables (6). Specifically, using the notations of Section 6, we obtain

GO — GO,O,O + 2GO»I.O§I U.Z.O(elg __en,)

G((n) — GJ,f.O + 20? 5 0§l. 0.2 0 (erz ezz

(10)
0,0,0 ,2,
00’ + Gov°x + 2678 %0 cos (w—w)).

In accordance with Section 1i, the qpantltles o and /p° - u, which enter
the expressions (6) of the variables $%, T, 5%, Y can be expanded in powers
of b or /i, with the various terms being finite trigonometric cosine series of

dl"l*
de_ *
of eq.(9) can also be expanded in powers of p or /i, with the various terms of

the expansion being finite trigonometric series of the cosines of multiples of
the two arguments w} and w.

multiples of the argument 2w. Thus, the derivative in the second member

In view of this, it is easy to integrate the equation of partial deriva-
tives (9) and to express X as a periodic function of w} and w.

: Let f be any periodic 1unctior with respect to the arguments @} and w. Let
us denote by {f} the part of f which is independent of w"

Thus, eq.(9) is partitioned into the two following equations, which are
completely independent of each other,

152
dly—{2) d( {)) dF* ar :
7d "Z> S(w) + = 7 X, R(w )— - +{dz } (11)
d dF*
T e ==z 02

ﬁhese equations, obviously, can be satisfied by putting, for X - {x}, {x}, and 3
n, certain series in powers of u or /h.

The successive terms of the expansion of X - {x} are finite trigonometric
sine series of multiples of the two arguments w} and w. The function X - {x} f

dat

‘larger than -E{_ and is of the order of u, while the second member of eq.(1l)

is of the order of u®. [See the expression (10) of G&?).]

éis, in addition, of the order of w. This is due to the fact that -S¥'- ig 2
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(el

- iof its expansion:

In +the expansion of the function {x}, the various terms are finite trigono-
metric sine series of multiples of the argument 2w.

We know that {A} is of the order of p® for the so-called regular planets
(see Section 6). It follows from this that the functions {G’} ard {Gi*’} are’
polynomials in p® with constant coefficients. Incidentally, this could have
been demonstrated directly.

: In view of this, it is easy in general to find the order of magnitude of
the *tuanction {x} We know that the varlable part of p ’ on31dered as a fune- .
tlon of w, is of the order of ula for ¢ = 1 and of the cxrder o{ g or € =0
2, 3, L, 5. Since also the indicated form of the functions {Gy’} and {G;?)j is
* 1
given, it can be concluded that the variable part of the function :F = 1is
. X1 i
of the order of u”/® for € = 1 and of the order of u° for € =0, 2, 3, 4, 5. In
addition, the principal term of the function R(w) is constant and of the order

2+
of u . From this it follows that the function {x} is

of the order ud ut, ut, u% u, u',
for ' €= 0, I, 2, 3, 4, &b

Let us finally pass to the constant n. Below, we give the first terms LEZ

1

n=xl"‘“—-yd§00°0— W (G0 + GRFOn)— - (lSi

Section 1i. \
4 The problem will be treated here in a manner analogous to the case in :
Sectlon 12. ;
‘ . t
Equation (2) resp. eq.(2') of Section 12 can be written as i

1 m,,2+E

du_ (N'+ N')u'¥ T(u). (1)

§

,The second member of this equation can he expanded in powers of p if € = 2, ..
1and in powers of /i if € = 3, 5, The successive terms of thls development are |

‘polynomials; in the first case (0 > 1) with respect to k, Kt s and dn vu; in 1ke§
second case (0 < 1) with respect to k and k cn u. The term independent of dn u;
€

|resp. k cn u is of the order of u 2 . The other terms are at least of the

3#—:— ' i
;order of W . ;

i
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We have demonstrated above that ihe difference u - v can be expressed as a
pericdic function of the linear argument v, defincd by eq.(3) in Section 12. To
arrive at this result, it is sufficient to replace [i(u) in the general equa~
tion (6) of Section 12 by u. In this manner, we find

u—v_.%s!fl'dv-(Q(”')m (2)

Thus, the function u - v is expanded in powers of p or /i depending on whether ¢
is even or odd. The various terms of the expansion are polynomials; in the
first case {0 > 1), with respect to the quantities (9) of Section 12; in the
second case (0 < 1), with respect to the quantitie. (9') of Section 12. The
difference u - v is of the order of p°® for € = 2, 3, L. and of the order of u
for ¢ = 5, This is the result of our above statemem.s a3 to the order of ma.gru«-
tude of the function Q(v) on p.77.

It would be possible to substitute the argument w for v by ea.(10) of /5L
|

Section 12. Thus, the difference .T?TK u - w appears as a reriodic function in
?w, having a period of 2. In view of the expansion of [Q], indicated on p. 76,
dw

:Lt is obvious that the velocity T of the argument w can be expanded in powers

oi‘ % or /H,depending on whether € is even or odd,and that the various terms of
the series are polynomials; in the first case (c > 1), with respect to the ;
quantities

E 3 \
k.lv kv T(b ‘27 (3)
and, in the second case (0 < 1), with respect tc the quantities
E 31
box (31
Let us now pass to eq.(18) of Section 8, written in the form of j
l
T 2y~a—‘-=U(u). *

t

linear argument v. By putting

dw, dH (L)
We wish to express w! as a function of the |

U ()[Q)
, V(u) =
() N

and by applying eq.(6) of Section 12, we obtain

1
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.

dv

€% _ p(u) = V(o) + u —H”—)Q(v)

(5)

dv

+ 320 L @)

gy 1tde
sl

It is convenient to mtegrate the second term in steps so as to avoid L?.i

the appearance of the function Q(v)

(90()
“dy

under the integration sign. In view of

190,
(el

the following expression is found for the integral or the second term:

w (V) [V) Q) + f ¥ —17) (321} ao.

;Here, we denoted by [V] the mean value of the periodic function V(v).

Thus, after integration, eq.(lL) will yield

Q)
(7]}

i =[Flv+ f (V) -2 o + w (V) —[7) ()

{, “:+1 ds-1 (dV(v)

+
‘-‘si-

i = (lv.-l (Q( \\l+1)

The seculur part of the second member has the expression

(VQ] o= v Q]
e (4] [Q]
iIn view of this, we can put ‘
! pv' = [{lq-?l , w=pt+y, (6)

I
t

where Y" is an arbltrary constant.
ition by putting

F W(u)=(V(u)—

!
|

For abbreviation, we will :ntroduce a nota-!

Q) _ _v—[U]_ . '
~ V)% (N'+N"),u=+%Q(") n

%

#




This will finally yield the wanted expression

10y —w' ==f(W(v)‘—-[W])dv + 1 (V) —[V]) Q(v)

LT
+ 25 e (e Qo).

The velocity uv" of the argument w" can be expanded in vowers of i or /B,
with the various terms being polynom iazls; in che first case (0 > 1), with re-
spect to the quantities (3); in the <econd case (0 < 1), with respect to the
quantities (3t)., For b = 0, we have v" = v{.

The functions (V(u) - [V]) and W(u) can be expanded in puwers of b or /i, .
with the successive terms being polynomials; in the first case (o > 1), with

respect to the quantities dn u, k'l, k, —%—, 2T% ; in the second case (o < 1),
with respect to k ¢n u, k, and -%—. It follows from this that the function (8)

can be expanded in powers of u or /b, depending on whether € is even or odd, and
‘that the various terms of this expansion are polyncmials; in the first case

(0 > 1), with respect to the quantities (9] of Section 12; in the second case
(0 < 1), with respect to the quantities (9') of the same Sec*ion.

It is easy t.o give the principal term of the Jdifferens ™§ - w" by neglect~-
ing b with respect %o unity. In fact, 31nce the lormulas (ly) <f Section % as
well as the principal periodic part of p° considered as a function of u are
given, it is easy to find that the function W(u), in the considered approxima-
tion, is a polynomial of the second degree with respect to dn u resp. k cn u,
depending on whether the first case (0 > 1) or the second case (0 < 1) is in-
volved. Thus, neglecting p with respvect to unity, tne function w} - w" is
homogeneous and linear; in the first case, with respect to the functions Xfv)
a.d Z(¥); in the second case, with respect to Y(v) and Z(v). 1In the most im-
'portant case in which : = 2, we readily obtain

\?"

Wy —w' = N'._ NuX(” Foo=diogt oy ife> 1

N

" 1 N ' .
“"‘“’"’N”’I‘Nny(v)+~--=a,,w','+~-, ifo<l, o

In the iess frequent cases in which € = L, or 5, it is necessary to add a
term in Z(v). This second term is of the order of, 2 for € = 3, of the order
of u® for ¢ = L, and of the order of ¥ for ¢ = 5.

3,
e

It is highly interesting that the argument ¢} thus contains, under the
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conditions of Section 12, a periodic term which does not vanish with u. This
term will be denoted by

dow).

From the various transformations which link the varm‘oles X1y Yoy Sy i of
Section 2 to the variables &), M}, §3, N% of Secticn 8, it is easy to demon-
‘strate that the argument -w? differs from ihe longitude of the node 9 only by
'small periodic quantities o? the order of u. Thus, the quantity -5,w§ is
nothing eise but the most iw- .r'ant periodic inequality in the longitude of the.
; " node of the orbit of the mi.»r planet.

Ve ws Whewehas aew w e

The argument w* contains an analogous 1nequa;1ty which we will denote by
bow, and which is obtained by permuting N and N" in the above factor of X(v)
resp. Y(v).

The corresponding inequality in the argument & = wj + @Y% thus will be X(v)
Tesp. Y(v) which could be predicted from the formulas (7) of Section 12.

After having expressed the differences

u - wand &} ~ w" as periodic

" functions of the linear argumerrh w with the period 2m, it is easy to obtain the’
~“complete solution of egs.(1) of Section 3 under the assumptlons of Section 12,
‘vle know that the variables

&. 7}1‘? §1" ’]2‘ 7 (9)
2 of Section 3 can be expanded in odd powers of /i and that the coefficients of

((/B)*'*! in these expansions are mlynomlals of the degree 2i + 1 with respect .
to the variables

N

E,=gcos(w—w), 7=¢sin(0—w)),

~% . - . ,
¥, =Vei—xcos w), 15="Ve'—usinwj.

*  We also know that the functions /58

AN

L .
S ) ¢cosw, egsinw, Vo'—ua

P2 I

* _can be expanded in powers of p or /i, with the various terms being polynomials
i+ H4n sn u, cn u, and dn u. Thus, the variables (9), divided by /i, can be ex- Q
v \!:anded in povers of B or /i, where the successive terms are polynomials with
v »respect to the functions

~
[N

3
{
I
; .
5 snu, cnu, dnu, sinw), cosw!. (10)
i
o

: It is necessary to integrate also the first of the equations of the sys’cem.
(2) of Section 3. As in the preceding Section, we will put i
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y.‘=nt+c+z 7 (11)

where n is a still unknown constant, ¢ is an arbitrary constant, and x is an un-
known function veriodic with resrect to the two arguments wj} and u. Since

eqs.(1) and {L) are given, the function X must satisfy the equation of partial
derivatives

L
dw" L U) + T( w=—3E_,

dz* (12)

The derivative in the second member can be expanded in powers of u or /i, where
the various terms are polynomials with respect to the functions (1C). We can
expand these terms in finite trigonometric series, arranged in accordance with
multiples of the argument wf. Let us denote by {f} the mean value of any func-
tion f(«%), periodic with respect to w}. In view of this, eq.(12) is parti-
tioned into two expressions:

df 1 ) d 4 {- “* —* I :
7 ")/ U(u) + __(7.‘_1}.)‘1’(“) = —d “ + {- l‘}. ( 3)

d 7) [dl * —_n ”I
_l T(c)== —]dz.*} * ( )

We know the nature of the functions U(u)eand T(u). Their principal terms /59
; 24 e
are constant and of the order of u resp. » 2 . We also know, in accordance
with the research reported in Section 13, that the second member of eq.(13) is
of the order of u®. Obviously, we can satisfy eq.(13) by a function X - {x} of
the order of p which can : = expanded in powers of B or /i, with the various
terms of the expansion being polynomials with respect to the functions (10).
.Thus, the function X - {x}, divided by 1, is of the same type as the functions
(9) divided by /ii. It would be very easy to write down the first term of the
considered expansion of the function x - {x}.

We can then pass to eq.(14). In accordance with the data in Section 13,
we first have .

dF* dF* _ dFyess
{dx, } B PO PR Gl l
— (G0 — (O — WY — e

'l‘ne three first cerms are constant. The terms in p® and u* are polynomals in
p , with constant coefficients. The following terms are polynomials in p? and ;
Icos 2w, By introducing for p° and cos 2w their expressions as functions of u, f
the second member finally will be expanded in powers of p or /i, with the vari-:
ous terms [as for the function T(u)] beingz polynomials-in dn u in the first ;
icase (0 > 1) and polynomials in k cn u in the second case (¢ < 1). The variable
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part of p? is of the order of “efa if € = 2, 3, L and of the order of u® if ¢

= 5, It folliows from this that the variable part of the second member of
€

3+ = s
eq.(1L) is of the order of 4 2 if € = 2, 3, L and of tne order of u° if ¢
= 5, We can divide by T(u) which is approxmtely constant and of the order of

2+
V) T and then select n such that the mear value of the guotient, considered

"~ as being a function of u, will vanish. Thus, the periodig functior {x} is ob-

tained after quadrature, approximately like L‘le function Q(u) of Section 12.
The function {X} can be expanded in powers of i or /H,depending on whether € is’
even or odd. The terms of the expansion, in the first case (3 > 1), have the
form

a' X(u) +bZ(u) +snucnu L (dnu)
and, in the second case,
a"Y(u) + 0" Z(u) + ksn udnu L" (ken #).

where L' and L" are polynomials in dn u resp. k c¢n u. The quantltlaa a,v, |
, b" are ccnstants. Here, a' , Y a.nd the coefficients of ' are polynomials

- mth respect to the quantltles (3); a", b" and the coefficients of L" are poly-

T

NN

N

=

v
)

AU

:fwhich correspond ‘o the three first integrals of the problem and seconly

nomials with 'espect to the quantities (3t). The f;}nctlon {x} obviously is of :
the order of # if € = 2, 3, L and of the order of u = 5. *

. The constant r, which is known as the mean absolute motion, can be ex-
panded in powers of u if € = 2, L or in powers of /i if ¢ = 3, 5. The various
terms are polynomalq in the first case (0 > 1), vith respect to the quanti-
ties (3); in the second case (0 < 1), with respect to the quartities (3'). The:
first terms of the expansion of n are given in eq.(13) of Section 13. The
quantities (3) resp. (3') appear only in the following terms, not written here.

Section 15.
r Now, all integrations of the problem have been performed. The integration:
iconstants are primarily

| z° =« h,
!
i

7 e

; i
which have been introduced after the three quadratures and which enter only the
arguments w, w", and nt + c. 5

{
; We still have to indicate the general form which can be given to the vari-|
ables X3, Y15 Sk » of the system (3) of Section 2. These variables are iinked
tto the variables X', yif, &¥, T, discussed in the preceding Section, over the |
transformations (12) of Section 3. We mentioned above that the differences '

%

B




x - xf, n - vf, S - §f, T« - Tf can be expanded in powers of u, §,‘*, Tl,,* and

in multiples of the arguments yy and t. In these exzansions, we introcduce the
already defined expressions for yi - (nt + ¢), &, T as functions of the two /61
argurents «} and « under the conditions of Sections il and 13, and as functions

of the two arguments w} and —EK— u under the corditions of Sections 12 and 14.
Thus, the variables

z, yi—Mmt+e), &, n (1)

-

are expanded in powers of /. The various terms of the expansions are trigono-
metric series under the conditions of 3ections 11 and 13, with respect to the
arguments

t, at+e, w, o,
ard, under the conditions of Sections 12 and 14, with respect to the arguments
t, nt p R
nt+c, o, 2Ku
It is possible to replace u:“ w" ard @ -~ w resp. —— u -~ W by their ex-

21(

pressions as functions of the argument w. Thus, the variables (1) are expressed
by series whose terms are arranged in powers of /B and in multiples of the four
arguments

t, nt+ec, w'+dwl, w.

In the third argument, the ineqoality SpwY which is not small with respect to u,
must be retained. In the cases of Section 11, this inequality appears only if
the exponent € is L or 5. In the cases of Section 12, the %elementary™ inequal-
ity in question will continue to exist.

In this Section, we have assumed up to now that the elliptic functions,
introduced in Sections 12 and 14, are expanded in Fourier series in multiples

pf the argument T"K' u resp. w. However, if the modulus k is close to unity, /_6_2

these Fourier series converge too slowly. It then becomes necessary to retain

the elliptic functions as quotients of the functions #. Then, in the expansion’
of the variables (1) in powers of /i, the varicus terms are trigonometric series
of the two arguments nt + ¢ and t, w:Lth .coefficients that are polynomials with
respect to the functions :

snu, cnu, dnu,
X(u) resp. Y(u), Z(u)

sia v}, COSw,
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or, if preferred, with respect to the functions

snv, cnr, dnv,
Z(v) resp. Y(v), Z(v)

sin (u” + d,w}), cos (w" + d,w’).

which include only the linear arguments v and w".
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RESEARCH ON THE MOTION OF MINOR PLANETS LLCTAY
Part III

Hev.Zeipel®

In Parts I and II of this research™, we discussed the principles of a
general theory of Mordinary" minor pianets for which the mean motion is not
approximately commensurable with the mean motion of Jupiter. In this Part III,
we will suppose that the ratio of the mean motion of the minor planet to that of
Jupiter differs from a rationai number

ptyg V=L2J“. R )

pad g first refatives

P

by a quantity comparable in magnitude with the square root of the mass i of
Jupiter. Such a planet is known as a "characteristict' planet of the type

P a.
P
We will everywhere retain the canonical form of the equations. Integration
is always possible from the formal viewpoirt by means of <emiconvergent series,
assuming that the eccentricities and the inclination are small quantities. In

the expressions of the coordinales and their velocities, the time appears [g

only, and in a linear manner, in the arguments of elliptical or trigcnometric
functions which remain finite for all real values of the arguments.

Let us briefiy indicate the procedure used here.

We start from the canonical system (3) with four degrees of freedom, given
in Section 2 of Fart I. Among the canonical variables

Tky Yhs Ske Tk k=1,2)

. defined there, y3 and y» = t denote the mean longitudes of the asteroid and of -
Jupiter; §; and T are of the order of the eccentricity while $; and T, are of
the order of the inclination. We will replace these variable:, in Section 156,
by the following new canonical variables

Tx, Yy Sky Th
T ———————

# Received 6 December 1916.

39t See Vol.l1, Nos.) arnd 7 in K. Vet. Akad. Arkiv fér matematik, astronomi och
fysik.

#HE Vol.12, No.9
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which differ from the old variables only by quantities of the order of the

mass . The cha.*acterlstlc function F of the new ce 1on1cal system includes the
two arguments §; and y» = t only in. the combination py = ph - (p + Q)¥=. From
this it follows that, the ney system can be reduced to three degrees of freedom
with the variables X, %1, & , T This reduction of the problem is always
possible ro matter what the ratic of the two mean motions might be. In addi-
tion, the reduction remains applicable ro matter what the values of the accen-
tricities and of the inclination become. It is only necessary to assume that
the two orbits do not intersect at all.

To reduce the problem further, we will limit the calculation to minor
planets known as characteristic planets. 1In Secition 17, we will introduce new .
canonical variables

=%, y*, B, of (k=1,2),

such that the dlffe;'ences X - xf,*).rl - yf will be of the order of q + 1, where-

as the differences § %3 Sx s le - Ty will be of the order q with respec'c to the .
small quantities s. R T\;* , and /ii. The cha.racterlstlc function F¥ of the new Q
canonlcal system is indeperdent of the argument y1 . From this it foliows that .
x$' is a constant and that the new system is composed of a canonical system with
two degrees of freedom between the variables §k and T, aad of an equat.:xon ex-

- -pressing tne derivative of y{f as a function of the variables §, and 7. The

variables F:x Hf“ , and yf include all so-called secular inequalities.

In Section 18, we will 1nvest1gate the analytical form of the character-
istic function F* in more detail. In the same Section we also will give de-
tailed expressions for the principal terms of its expansion.

The next Sections are concerned with the integration of the equations of
secular variations. We first obtam 2 oa.rtlcular solution in which & and i
assume constant values 37 = Sy Tlx = C = Tb O for whlch the function F¥ is ‘
-gtationary. In the general solution, the unknowns & and T execute small os-
‘cillations about these constant values. The unknowns ¢, Ty as well as tlie os-
‘cillating part of the argument y1 may ordinarily be expanded in trigonometric
geries of the two arguments w and w", linear with respect to time and having
velocities of the order of w. If q 2 2 the coefficients of these expansions
are x'a.tlonal with respect to the moduli of eccentricity and inclination (denoted .
by € and €" and :.ntroduced as integration constants) as well as with respect
to the eccentricity € of the orbit of Jupiter and the square root of Moo If
q = 1, the mentioned coefficients are pcliynomials with respect to ¢ , €Y, e
and /ii. :
' !
i In the mentioned expansions, certain integration divisors appear. If one !
of these divisors becomes too small, the series used become illusory. In this i
case, the planet w21l be known as "singular". In the opposite case, the planet;

fis designated as "regular®. The singular planets of the type -p—p—- have thely

}nean motion in the vicinity of certain well-defined values located symmetrically
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. . p+1l . p+2
on either side of the value —5 The singular planets of the type —
+ 2
have a mean motion greater than the value 'E'?T—°; incidentally, for these

singular planets, the eccentricity or inclination is necessarily rather large

+

D
(comparable to w¥ Y. For singular planets of the types _;_ETS_ where q 2 3, [4

the eccentricity and inclination are necessarily smali (comparable to u¥?).

In this Part 11II, we are concerned exclusively with "regular" planets.
Despite the fact that our goal has been mainly to give a qualitative and ana-
lytical theory, we have developed a relatively large number of detailed formulas
so as to make cur work useful from the viewpoint of numerical applications.

The theory of secular inequalities of characteristic and singular planets
can be developed more or less like the corresponding theory of ordinary and
singular planets, discussed in Part II of this research.

Section 15.

We have thrown the equations of motion of a minor planet into the form (3)
of Section 2. This represents a canonical system with four degrees of freedom.
The investigated system returns to the general type of the equations (1) of
Section 1. In the actual case, we have

v, =v,=0,
h(zuz:):'z_z‘i — Xy,
1

dh _ dh
n, = —— "3 n,=-—d—z; + 1.

We will apply the reduction method of Section 1 by assuming that nm; and np are
about at a commensurable and simple ratio. Let us consider two positive whole -
‘numbers p and q which are not too large and have no common factor. We will
assume that

Pty

ny, — p

is a small quantity of the order of /b or smaller. Then, in the application of |
the method of Section 1, the small divisors will be three, i.e., :

'
I

; pru—(pt+dm, v, ». |

We must start from the equation of partial derivatives ' Zﬁ
pisiEY ;
F dfh; Jh’d?’ ’rk) F( ydr v!k’dgk (1)
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where F(% , % ; 5c» T« ) is a characteristic function of the system (3) of Sec-
tion 2 while F(% , % Bk, Th ) is a rew function which must be determined at the
same time as the function S(% , ¥ S » Tk )

iet us assume that the two functions F and S are i‘ormed. Then we must
substitute in eqs.(3) of Section 2 the variables % ; % ; S, T by the new
variables % , ¥k ; % s 'k defined by the equations

ds(zk,Jk,an) - dS(-Tk,yk,Ek.m) .
= dyx Yr = diy (2)
I =(_1_S___(i!l_'_yk;5k’_';~k), 7 (_iS(Ik,yk, Ekq rk)

A e = d&

Then, we find the relation
F(zk’ yk; E’h 1;") - F(j:kv flk; _ék: 1’2")
as well as the new canonical system

dxk dF df/k dF

At T dp” At T T dax

G _dF di__dF. )
t dn N dEx !

Let us demonstrate now how the functions 1;' and 3 must be formed. For this
purpose, it is necessary to introduce in eq.(1), the series
F=F,+uF, + WF, 4,
S=8 +u8 +uS, +

a.nd Yo equate, in the expansions of the two members of eq.(1), the coefflclentSv
of p° , of B, etc. By putting first

! v 1
. 1'0"‘1'10”’2;-'

i

—-— Xy,

8§y = 2 T Yx + 2 Sk Vi

-l k=1

t

leq. (1) will be satisfied for u = O.

By equating the coefficients of ik in the two members of eq.(1), we find
100




the relation

n —-—F —F.
k%: * ()

As done frequently, we will again put

Ex = ox cOS wk, Lk = Ok 8in Wk -

Since the expression of F; is given by eq.(5) of Section 2, we must set

Fo= D Fmm €T el ericos (1py + fuo, + fo0) (5)
with the notation

pY =2y —{P+ q)¥,.

In the sum (5), the indices ¢z, j1, ja, m, m, me all take integral values vfthh
satisfy the conditions

lit'f_ﬂmnl 17:1 << m, = even ,

leg + 7, + il << m. #(6)

From this it follows that

legl<<m +m, +m,.

After this selection of Fy, eq.(4) will yield the function S, without small
divisors. We then find ,
i

l m, my, m

8, = z 1 ;‘;:u‘:l‘lﬁﬂ, en ey sin (ilyl + izyz + 70, + 7.':“’1)~

In the sum &' , the indices must not only satisfy the conditions (6) of Section 2
but also-the inequality ‘
‘ G(p+g)+ipmo0.

Let us also equate the coefficients of u® in the two members of eq.(1). 1
This will yield the equation

# The notation a << b is to indicate that b - a is a nonnegative even integer. 7
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by putting, for abbreviation,

Fe=giilay,

3 _, ‘d§> dF, dS, dF, ds,
dzl dy, dy, dz,

Z(dl' ds, dF, ds, (8)
d§k dr;, drk d

In view of the form of the functions 7, Fl, and S; as well as of the condi- ;
tions (6) of Section 2, it is easy to demonstrate that F. will have a f>rm ana-
logous to that of Iy [see eq.(5) in Section 2]. _ Only, to obtain the condwt:cne
of the indices in Fz, it is necessary to write m + 2 instead of m in the condi~
tions (6) of Section 2. If we do this, then Fz will be the sum of the terms of
Fb where ‘

=tp, H=—i(pt+q, (=0, £1, +£2,...).

After this selection of Fg » the function S; is obtained readily and without
small divisors, after integrating eq.(7).

We can continue in this manner and thus form successively the functions Fi s
F, s and Sy . By setting ,

“’ZF.;,':;,;?‘,:" e'mgvlm o7 cos ("1 y, + izyz + ixwl + j,m,), (9)
we will have ;
8
- Vo \ . T
Fio D P i €7 €060 008 (PY + o0, + fo,), 1
(10)
?'F',,u.ﬁhm ymem. ""sm(z y + 1 y +’ w, + 7 w,).
A 'Y 1Y Y2 1y 20, (]1)
! The conditions satisfied by the indices are
' |i1|<_<_’":: 'f:lf_{mz='e"°‘.
l4, + ’.z_jx“‘jxlﬁf_ﬁ +2v—2
| 1
for F, and Sy, and ;
: |j||_<__<_mn Ii:IS,Sm,neven. ‘
lig 4, + jul S<iii + 2§ —2 (12)
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In the sum & which gives Sy, all “erms where i3(p + @) + izp = O are ex-
cluded, i.e., the terms where i; = ¢v, iz = -¢(p + g), with ¢ being any integer.

Evidently, the variable x does not enter the exransions (9), (10), and
(11).

The coefficients

Fiymam (i=2,3,4,...),

defined in this 3Section must not be confus-4 with the analogous coefficients

introduced 1n Section 3. The two series of coefficients would be identical if,:
in the expansions in this Section, we wonld have given only a value of O to the.
index z. .

Let us now study the canonical transformation (2) in more detail. This
transfomatlon 2an be written in the form of

. _d(8—38,) . d(8—8,) [
Ly X, = dy, ’ Yo=Y i —- “d"xl"“ ’ ‘
5, E = 48— 8, re— 2= d(8—8,) (3)
=k Sk dl“k ] Ik % J— d...:k

On the one hand, we have excluded the relation which yields % ~ X, since we [_‘2
no longer need the auxiliary variable x and, on the other hand, the relation
¥2 — Y2 = O which shows that ;

Y =t=t. (1)
On solving egs.(13) with respect to the variables x3, y1, & , Tk and on },
Jutting :

E4 = {'% COB {0, [k = 0« 8in wy, {k=1,2), (l5§

t
v

we find that the differences x3 - %y, Y1 - &1, & - §k » % - Tk can be expanded?
in the form :

EC"’i e";é!‘n: ?:'2 :‘0: (ilgl + 1, + 7‘.15'; + 7'31;‘:)- (16)

:Here, we have cos for xy - X and § - 5, while we have sin for y; - y,ard
Te - 'ﬂk . In addition, we have

{7l S< my, (k=1,2).

Besides, m and j» Aare even in the expansions of % = X1, y1 = Y1, 51 - G1»
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Ty - 'f.],_ but odd in the reries that yielci 82 - §..2 and T, - Ty - Finally, we have
liy +i,—j—dl<<m+2i—2
in the expansions yielding x3 - ¥ and 73 - % , but
I +h—ji—pl<<m+2i—1

in the expansions yielding & - S amd T - T\ .

Let us finally return to eq.(3). Tre characteristic function F can be
thrown into the form

F=F,+ uF, +-;1‘Ii,+---, a7
where
. 1 R .

. F.=§;-:—:—I: (18)
- and : ' /10
, Fom R FT T 5 € 07872008 (ePY + 1,0, + G iy). (19)

}{ere, we havz put
Py =P —{p + Q)i = pi—(p + g)t. (20)

The relations (_12) atill remain valid.

. Since F deperds on fn and fra cnly in the combination p§', we have the first
) ﬁnt.egral :
Pty

iz‘f Tzl-_-C.

~ It is thus easy to reduce the system (3) to three degrees of freedom. For this,
it is sufficient to replace the variables

2.,_, z.zv

: y.ll ."h. |
by the new variables
; i,, C_i-’.{-l)_'l-_qi'l' .
Z .. +q. ) 21) .

Y=y —= q!h- Y. ( )

r
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This transformation is canonical. The new sysiem becomes

di, _dF dy_ dF

dt ~dyg' dt T dz,’

de_aF dw__dF o ?2)
dt ~di  dt &,

In the expansion (17) of the characteristic function F", we now have, because of
eas.(18) and (21),

2 1 .
Fo=2—‘i_:‘+ E—}-)*gr,—-c. (23)

The solution of the problem does not depend on the parameter ¢ which /11

finally appears only as an additive constant to the auxiliary variable x=.

Section 17.

The method of reduction given in the preceding Section is of broad gener-

" -ality. This method is applicable no matter how small the quantity

S EY (1)
?

might be. In addition, we have made no assumptions as to the magnitude of the
eccentricity and of the inclination. Therefore, the discussed method is appli-
cable not only to the case of minor planets but also to periodic comets whose
mean motion is moi= or less at a commensurable and simple ratio to that of
Jupiter. However, it is necessary to assume also here that the two orbits do
not intersect.

To continue the reduction of the system (22) of Section 16, we will limil
the problem by assuming, in this Part III of our research, that the quantity (1)
is not too small tut compareble in magnitude to u™° and, on the other hand, that
the eccentricities and the incliration are small, for example, of the order of -
u-lla or else of the order of w¥. Thus, the theory we will discuss here is that
of minor planets designated as "characteristic® planets.

We car then put
_dF, '_l_ PHa_ ;
dn =5 M (2)
where the quantity A is comparable in magnitude to vnity.

To reduce the canonical system (22) of Section 16 to two degrees of frae- -
dom, we will start from the equation o
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F%‘—;:g},dw-u)mF (,.&.—.) (2)

We will atlempt to satlsfy this equation by introducing for the unknown func-
tions S and F, expansicns of the form
/2
Fo=Ft+e+ )1 F 4+ o2 F} + y'2F¢ +-..,
8 =8 + 1018, + 128, + 11 8y + uh S, +-- . (%)
On expanding the two members of eq.{3) in powers of u¥ and on equating the

coefficients of the same powers of “113 s it will become possible to successively
determine the various terms of the expansions ().

Bv setting
= 1 . ptg
F' FO 21’: p Cl
‘_2_‘ N ;
-s.=57.!'/+ ‘Lgkiko (5)

k=]l

eq.(3) is satisfied for p = O.
After this, eq.(3) can be written as

- . dlS S a(8s—i
Pl M08 g5, 8= )

. (31
P (2,; B i (S — S.))
The term in ‘_,.113 vanishes automatically.

On equating the coefficients of u in the two members of eq.(3'), we obtam
the equation

498, 3 @8, :
dy+2z )+F=F‘ ;

ds,

Th:.s is an equation of the second degree with respect to ——. As solution, E
dy :

we will select tne root *
' ds, 4z sz | .
e L O ()
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It is necessary to select the function F; such that the mean value of the
second term, considered as a periodic function of y, shall vanish.

Mereover, ir accordance with the formulas (12) of Section 16, we know /i3
that the exponents m, m and my, as well as the number ¢, which appear in any
term of the function Fy, satisfy the condition

gl <<m + m, + m,. (7)

Thus, in F1 s the ter'ns .periodic in in y are at least of the degree g with respect
uO the quantltles e N 91 and 02 . We can conclude from this that the difference
F; - F1 must be at least of the degree q wit: -espect to these same ntities.
Thus, it is permissible to expand the square root of the expression ?‘6“; and. to
write

dS

25 = F—F +5 5= ,(F —Fyp

(8)

d" s (F F‘)’ ____ (F F.)‘

NEPIEH 4-» i

In the known function F1 as well as in the unknown function F‘1 s We will
: wroug together the terms which are of the same degree with respect to €', p;,
and Pz . No matter what the number q might be, we then can write

F;'-=Fl,0+FI,I+Fl,2+"': (9)

—Flo+ Fia1+ Flat-, (10)

where Fy, and Fiy are of the degree k with respect to €' , §,, and f2.

Let f be any function periodic with respect to y. In Sections 17 and 18,
we will denote by

n

the mean value of f , i.e., the term independent of y in the trigonometric ex-
pansion of f. For abbreviation, we will also write

h=t—1 ;

After this, so as to cause the mean valie of the second term of eq.(8) A
to vanish, it is necessary to determine one by one the various terms of the i
expansion (10), on the basis of the following formulas:

'

f Fl.,o - [F’.OL
Fiy=[F11],

107




Fia= (B3] + ,jx [(Fia— Fia,
Fia= Uhad + 50 g [(Fra—FR) (Fra—Figl)
+g ;1‘5::' [(Fra— F2)%,
Fia= (il ¥ 5 % i (Fra— Fiap
b 2(Fi— Fi) (FLa— Fla) )
+ g ot (= L (P — Fisl)
+ g geaeBa—FL),

Because of the relations (12) of Section 16 for i = 1, we will have in F

Ijl'ﬁsmu |7’:|5_Sm;=='eh. ( )
12
leg +7, + l<<m,
legl<<m+m, + m,.

Hence,

[Fuzral=o, (K=0,1,2...).

* --We even have

Fiava =0, if q is even
We will p}lt Ll-.'.s.
Fr= Efk'ﬁ.ma.mg €™ g om cos (f, i, + 7. @,). (135

In view of eq3i.(1l) and (12) it is easy to demonstrate that the integers

- s % » and m which appear in the expansion (13) of F; » still satisfy the rela-:

tlons

15h1<<m,, 17:]1<<m; = even, :
P lj, + il << . ()
It, follows from this that m + m; + my is even and that
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Fiax=0, (=0,1,2,...).

In view of all :his, egs.(11) are simplified and can be written s follows:

o= [Fidl,
Fl..l='-01
F2=[Fl]+2‘jg 4[(Fl’l])
Fl..3=0
= Frd+ govgs WP + 20000 (Rl + (25)
3
+ g (R A+ g KR,

After thus having successively determined the terms of the expansion (10),
it is possible to find the function S; by means of a quadrature, using eq.(8).
By arranging the terms in accordance with their degree, we can put

S, =8,1+8:+ S+

&

In addition, the function S; will have the form /1

8, = FShmmem gm g sin (py + jriv,gt faloy).

Evidently, the relations {12) are valid for this functioﬁ S5;. It follows from
this that

S2x41=0, if q is even .

let us now compare the coetficients of “a/a in the two members of eq.(3').

This will yield the condition _

as,, 3 48,d8, ¢ o (16)
ddy+ a3 dy-&-m, F1=0, )
|
'on putting, for abbreviation, '
2 (d8,\° dF,dsSs, dF d8, dFid dS
0'=”:E_:(TI§'I|) 75?:3§'+2 dk, dix di: dE ) (17?
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Thus, taking eq.(é) into consideration, we obtain

‘_”'_“"_‘ = o, —F;
dy "7, 6 5w
(1~ ags (P — F2) (28)

On expanding the known function ¢ as well as the unknown function F2 ) we
can group together the terms that have the same degree with respect to ¢ s Py
and f2. We thus put

Dy =Wy + Doy + Pop +---, (29)

Fy=Fio+ Fii+ Fia -, (20)

where %3 and F:k ape of the degree k. After this, the condition that the mean:
value of the second term of the equality (18) shall vanish is expressed by the
equations ,

[@5,0] — F20=0, Q:Z
(@] — Fn+4, ;[(Fll"’Fll)(mzo—Foo)jaO |
[@:2] — Fio + 2‘.;3 UFy1— Fiy) @1- - <'$1) (1)
+ (Fre-  * ) (@0~ F3o)]
-+ gt (P FLa) @no— B2} =0,
;I'he function &; has the form
@, = 3 OL ™ e g 008 (cpY + iy + i) (22):
‘;Obvj.ously, we here have
ld<<m, 1] S< ity = even, i
leg +7+hl<<m+2. (23D

The function F'.; » whose various terms are obtained by means of egs.(21),
has the form
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Ft = 2,;:;‘ my,m, e'méllmiy’m cos {j, 0, + j,0,). (2[")
The integers m , & , and m obviously satisfy the conditions

:xlf_im“ I].,lss_mz==even,

(25)
17, + 7] <<m + 2.

The relations (23) resp. (25) show that
[@s,2041) =0
and that /18

Flaps1=0.

Thus, the formulas (21) are simplified and bhecome

Fgo=[My0],
F31=0,

. 3 . . )
Flo=[0,2] + 7z [{F1,1} {@2,1] + {F,25 {@3,05] (26)
+§—4T ] [rF } {mz.o}],

Thus knowing the function F5 it is possiple to obtain the function S; by
means of eq.(18) after a quadrature. We can put

S;=Sp0+ 81+ 82+,

where Sy, is cof the degree k with respect to e, P1, and Pz. In addition, the
function Sz has the form ’

S, =23'2,;:x""'"" € o g7 sin (epy -+ J10y + fatin),

and it is obvious that the relations (23) are valid for all terms of Sp. Henceé
So2041 =0, if q is even.

‘ A comparison of the coefficients of p® in the two members of eq.(3!) wili
yield an equation of the form _
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by putting, for abbreviation,

0, — 3 (dS )

6 (dS,\*dS, . 5 (dS_)

dy 2 \dy| dy + 2z \dy
dF s, Z (dF d8, dF:dsS,\
d:r‘ dy die  die dgf
1d*F, @_9_) o d*F, dS,dS,
2dx\ dzd,‘dz/drk
d*F, (d8,)*_d'F; (@8,
+33 (EF dr,) ~it (32))
d*F, dS,d8, d'F; dS,dS, 4
dE dE, di, A, didn, gE, dE,

Equation (27) has the same form as eq.(16).
.same manner, it is possible to derive the functions F¥ and S5;.

(27)

By treatlng this equation in the

We can continue in this manner and thus successively determine the varlous

terms of the expansions (L4).

We will have

F?=2/};}’; """"’e""g 07108 (§,w, + 7,00,)
with the conditions
v lil<<m,, |l <<m;= even,
lj, + sl <<+ 202
;nd

S = 3 SET™ e gm g7 cos (epy + futdy + faia)

'

with the conditions

Ijll.<$.m19 I‘,izl_f_(_m,=even,

leg + 7, + 7| << 7 + 25—2.

The function Fi is always even with respect to ', p1, and Pz .
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Ia

et st o =

!
Finally, by means of the transformation (32), we introduced the argument y’.

is even with respect to € , p,, and j; provided that q is an even number,

Now, we will introduce new varlablev x;, v, Qy, Tk.

For this purpose,
we form the function S(x, 7 sk, 'h\ as well as the ccrresvonding canonical
transformation, which latter can be written as

By virtue of this transformation, we obtain
F(a, 35 &, i) = F* (2t £, 1),
This is directly obvious by writing x', & instead of % , & in ¢q.(31)

The new variables satisfy the equations

dit _dF*  dig dr* -
& dn di - d (k=12 (33)
- dz* dyt dF‘ .
TR T 7 (34)
This will yield the first integral

z; = const.

relation

We will then slightly modify the second eguation of the system (34).
In Section 16, we first defined two arguments y and yy, correlated by the

(35)
and then two other arguments § and y, such that

(36)

2

Now, we will define a new argument ¥i by putting
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yi=y* +p;qt (37)

The second equation of the system (3L) will be substituted by the equation

dy; _p+g_ dF* . . d(F*— F‘) 8
dt dz? = dx?! (38)

Equations (33) form a canonical system with two degrees of freedom. After.
its integration, the expression for the variable yff is obtained by means of a
quadrature over eq.(38). :

Equations (33) and (34) or (38) are known as equations of secular varia-
tions of the characteristic minor planets.

Let ug retum again to eqs.(32). By solving these equaticng for the vari-!
ables X1, ¥, Sy » ‘h: and by putting :

§5—=ok cos Wi, b= ok sin wh, (k=1,2), (39)
ve find that the differences ¥ - xf', ¥ - y*— n - yf, & - Sf, T.‘k - Ty can be
expanded in the form of ;

I} o cos . . . . !
20 {Vay emgrmgm o (c[pyt — (p+9) 145,08 +r0). (1,0)
f §

Here we have cos in the expressmns of }’\9 - x; aid By - s,‘ » while we have sin
1n the expreseions of y; - yi and Ty - Tk We also have

el << 1ma, (k=1,2).

In addltlon, me and jo are even in the expansions of X xf", n -y, 51 - &f,.
'ﬂ; - N but odd in the series that yield §; - S, and T‘;;; - Tg% Finally, we have

leg+j, +il<<m+2i—2, |eg|<<m+m +my+2i—2

i

in the expansions yielding 3, - xi' and yy - yf , but

L. } . i . 1z
leg+d +5]<<m+ 201, |igl<<ni+m, +my+2i—1 iz2

Ain the expansions yielding g - & and T.\( - T\‘*.

. All this readily results from the second expansion () which yields S, ‘
from the formulas (30) and (31) which determine the form of the functions S;,

and from the relations (36) and (37). ;
11,




Sect:on 18.

We will study the principal terms of the expansions of ihe functions F¥
in more detall by successively considering the cases where q 2 L, q = 3,

nd S i
=2,0rq*=

a
q

We always have

FieFim 250 o
1

The cxpressions of the other functions Fo(i=1, 2,3, ...) generally
differ, depending on the value of the nurher q. However, these functions are
still defined by the formulas (19) ard the conditions (12) of Section 16.

Let us first assume that

g>4.

We then have, considering separately the groups of terms which are of de-
grees O, 1, 2, ... with respect to e s P1, and pz,

Fro=F3a50,

Fiy=0,

Fra=F50000; + Fuobo o) + 2Fuatoeo, cosam, + Fy o 0et

Fi3=0,

(L, =F5oe0 0t + Foobter o+ Foobs o)
+2F505% 010) cos (26, — 2iv;) + 2 Fy5 00 €' 62 cos o,
+2Fyh i g0t cosw, +2FET e @, 0} cos (w,—2w¢)
4 Fhi0emsr 1 o FL230 6142 cos 26, + FLB0E ¢
+2FLeYs 0l cos 2w, + SFNNL0 €%, cos o + Fradben,

12,0,0,0
Fzo=Fio00, ? /23
F‘_’.l "_'0)

- 0,20 . 2,0,2,0 - . 2,0,0,2 -
[(Fa2]= Fi 000! +2Fga 20 0} cos 2¢x + Fuo00 0

2,0,0,2 2,110 ;- . 2, 2,0, ;
+2F500s 6t cos 2, +2Fgq 0 €0, co8 @, +Fo,§'o,oe R x

........................

Equation (8) of Section 17 shows that ¥, - F{' is of the order q with re-
spact to e, p, and pz. Hence,
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Flo=Fu,,
Fiz=Fy,, (for g>4)

. (1)
Fig «[Fu4l.

In accordance with the same formula (8) of Section i7, the function S; is
of the order q with respect to €, 0;,and po. Thus, eq.(17) of Section 17
shows that the function ¢, is of the order ¢ and that [Qz] is (f the order q +
+ 2. Therefore, eq.(18) of Section 17 whose denominator differs from unity bty
quantities of only the order aq, demonstrates that

F;.o:ol
F0:2=0, ([or q_>_4) (2)
F2s=0.

- We can then pass to the function Sz. Acoordmo to eq.(18) of Section 17,
-" the quantity Sz is of the order q with respect to e, P, and 0z.

S In continuing, it is egsy to demonstrate that the function ¢; - F is of
--  the order q and that [¥; - F.] is of the order q + 2. The functions F¥¥ and S5
-° are obtamed by an equatlon derived from eq.(18) of Section 17 by writing there
Sa, #3, F¥ instead of S, %3, F¥. Hence,

o i30=Fo,
F3s== {Fz.:] - ( for g>4) - (3)
: Fiy=[F4]-

- Then, we find immediately that the fuinction Ss, as the function {F"z } , is J24
* - of the orlcr q - 2 with respect to €', §;, and 03.

. Finally, it is easy to demonstrate that the function %., of which we did
~ mot give the exprassion, is of the order q - 2 and that [% ] is of the order q.
"' Hence

! ]

{
o Flo=0, ' ) :
. (for g>4 _
L Fii=c. (k)
” Let us now assume that
g=3.

. this case, we must start from the formulas
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« . 1,2,0,0
¢ 9, cosay + Fooeoe®,

Fis=¢ F‘—'%.a;'&s.a,o ¢} cos (py—3w,)

+ 2Fp 124 1,20,0] cos (py

—w,—2w,)

+ 2F 300 0e' 9 cos (py —2a,)

+ 2 F333a0,2¢' 0] cos (py
+2F25 s 00€ ¢, cos (p
+ 2F%3%04 0,02 cos py,

Fi4=~ expression of [F)]

Fa =2F22%% | 06, cos (py—

—2w,)

g-‘;’x)

for gq==4,

............

w,) + 2F3’};3‘fg_qo e cospy,

Fa2= expression of [Fo3] for g=4¢,

......................

Thus, eqgs.(15) of Section 17 will quite simply yield /25
F].,0=Fl,0: -
F'z“ﬁ',» { for q=3)
1, -m (5)
Fi. e F],(-

The function S; is of the third order with respect to e', E; » and 53. The
same is true for the function % in accordance with eq.(17) of 3Section 17.

Here, we even see that the mean value (&,
eqs.(26) of Section 17 show that

Fi9=0,
F3e=0.

, According to eq.(18) of Section 17,
toe,pl,ampzo B

It then is easy to see that ¥; - 1.73
value [¢3 ~ F;] is of the fourth order.
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(for gwe3) ‘ ()
S2 is of the third order with respect -

is of the third order and that the mean
Formulas completely analogous to the




g

formulas (26) of Section 17 will then ahow that

F. =I’ .
9 .2.0 ( for q=3)
Fly== Fas. (7)

The eqnatlon which yields S; indicates that this function is of the first
order in €' , 01, and f2. Finally, it will be found without any difficulty that
% 1is of the first order, from which it follows that

Fgy=0. . { for g=23) (8)

We will now treat the cases in which

g=2.

The various parts of the function F will then be

Fy; =0
126
Fra= Foo500l + 2Fhp50008] cos (py —2,)
+ Fhort ol + 2 F 50268 cos (py— 20,)
+ 2F Y0 o, cosis, + 2FLY) bea10€ 0,008 (py—a3,)
*F&ﬁ;&ﬁe + "’F_,,,.,.-»Mc cos pif,
Fa=0,
[Fi. = expression of [F)4] for ¢g=4 ,
Fyo=— Fa&&i,’ + 2 F2p30a 00008 Py,
Fop=0,
[Fs2) = expression of [Fas] for g—#¢,

Equations (15) of Section 17 will now lead to the expressions E
Fio=[Fril=Fu33s. |
Fiam By = FSE06 + FLBSIE + |

+ 2Fhbte o, coss, + Flatoet, (9

TN
=S

& X

I~
Py o e e
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F“——[Fl ‘]+2J z [rFlz}']

3
~(Fiats+ 2 (P50 &
29 .q - ( 3 .0,0,2 ol -
+ Foous 616} + (F3:3:3:3 b ) 6
(9)

9,2,¢ . .
-+ Q(F}":::':::z_g Fl_’ p4’-220F—p P29, .,) 919: cos (2(0(—2(0,)

{130, 3 21,020 . .
+ 2(1’3:_11),?:0 + —:‘P F—."-P*"—'-- OF—P p+2.l 0) C'Q: COS w,
3

L1LL2 s - .
+ Fy1e€ 2,0 cos w,
1,1,1,2 1,0.0,2 | . .
+ 2(F°'° Lzt .‘4: «F—pmw’f-rphlo €'9,0] cos (v, —2w,)
’ 1,2,2,0 FLE03
+ (Fo,o,o,o + 2. (X _,,],+2,1 o) )e"g} o 0. ooe”g,

1,0,2,0 1,2,0,0 te - -
5 Flpprnno F—p.p+2.o.0) €*g; cos 2w,

1.0, 1,2,0,0
F—p.‘;fz,o,z Fep ot ) ¢ g} cos 2iv,

1,1,1,0
s tano Fig i, o) €', cos i,

_1, , +2, o'o)t) et

According tc eq.(8) of Section 17, we immediately obtain the principal
part of S, (i.e., the terms of second order) in the form of

PASy: =2 F%%%0 200 sin (py — 2,)
+ 2FL5%%00,26) sin (py — 200,)
+2 F._p s+ 1,0 € 0,30 (pY — w,) (10)'
“ 2FkrEds00etsin pY..

Equation (17) of 3Section 17 indicates that

; Boo=0,
o~ 3 {100 43 - ST
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Thus, eqs.(26) of Section 17 will yield

We can now pas3 to the function 5;. Since v,
shows that the function S; is of the second order with respect to €', py,

am 62.

F30=0,
- l .0,2,
F3a=[@:3] = — ?Z{S(F'_,,_,,L 2,070 +8{F13%32 0,2)%] (11)

1,0,2,0 1,1,1,0 . . 1,1,1,0
+ 8 F g 020 F2p s 10€0,cosm, +2(Fhpils o) e},

= 0, eq.(18) of Sectic- 17
/28

Equations (17) and (18) of Section 17 readily yield

PPS28a =2 FE0%0 .0 (p

dFy%e
0.0 —4F’:3 :-8 oisin{py—2w,)}

dz,
1.0,0,
+ 2 FEy%30 02 (pdﬁ;o,:l 20 _4Fhey 2) olsin(py—2w,)

+ terms that cancel with €'

+ terms with 2 py in the argument.

According to the definition of the function ¢, it is easy to see that

Byo=Fay,
3 [4iF 48
[0sa) = [Fa) + 3 [0 Cer].

k-l

Finally, formulas analogous to the formulas (26) of Section 17 will yield

Fio=[@5,0) = [Fa0) = F3523,

Fap =[] + ;.%p [{F12} (@50}

. >
= £,

+ F3

s

" d

Godl + 2F50%0 6! cos 24,
0,

“ %3

338 @
g' ?)9 "2F(2):g:‘ Q 2(0'
aF

__.___4F1,0.2,0

8
‘;f:jx(F!—g}*'?"N),( 0,0,0,0] €]

(12)
3_4: (Fip3ia02) (P Foads —4Fp 388 o
+ _;rz-’: Fipitan0 F‘iﬁ,";‘lg 0,0} cO8 20,

0,0,
+ jsz Foyita02 Fag 3850061 o8 26,
+ terms that cancel with e
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last, we will consider the most difficult case in which

g=1.

Here, we restrict ourselves to merely deriving the formulas required for

calculating the inequalicies of the second order of magnitude, while considering
/B, the eccentricities, and the inclination as being of the first order of mag-

nitude. We will start from the expressions

Fx 6= Fo.g',o,o ,
F; 1 == 2F_g ',2. 1,00, €08 (py—w,) + 21"_,, ,H 0,0 €' COS Py,
Fra=Fpdso o; + 2F_n, 2p+2,2,0 0] €08 (2py — 2@,)
+ FEo650 + 2F250 % oen0s 0! cos (2P — 24n,)
+2F5ar0e ¢, 0080, +2F 5030001 0€ 0, co8(2py —iv,)
+ Fogooe® + 2 F g pen00€" cOS 2py, -
Fra=2FY33%8, 160 cos (pg— )
+2 F_: b0 @] cos (py — @,)
+ 2R _120,0] cos (py + i, — 2dd,)
+2F3li00 €6} cospy
+ 2FLp5120€ 8! cos (py— 2iv,)
+ 2F 500 €@l cos py 7
+ 2F 358002 €0 cos (py — 26,)
+ 2AF'_'f;,}':°+., 1,0 €29, cos (py — w,)
+2F205h, 1,0€7 8, cos (py + ;)

+2 F'_,’; p+1,9,0 € COS py

+ terms that contain 2 py in the argument
According to eqs.(15) of Section 17, we will thus have
Fio=Fy3a3,
Fia= (3834 J.,z.(r'_;&',,s, v & + FESS3e

+2 (F 00+ o _/’ : FLpbh, l.oF!'-}a',%x.o,o) €'¢, cos i,

e

(13)

JRp———



+ (F + —3 (F’—},‘},‘lx 0,0°

Equatioh (8) of Section 17 indicates that S; is of the first order with
respect to € , 3, and 0. Obviously, we then have
pJSlJ =2 Fl_';’,',‘,g;, 1,0 ('7, sin (py et (I"l) + QFI_';,',O',,O.'.],O,O ¢' sin py.
pJS),z = (F’.’%ﬁfg,u, 2,4 + 24. - ‘ (Fl—g,lx;g»}, l,«))z) Q: sin (2 p};’ — 2('0,)

1,0,0,2 1y o . .
+ F22p3p4:,0,20) 8in (2py — 2w,)

(Fl 3p,2 p+21o-rd. .F'_,‘;LﬁnoF—p,Hoo)ee.em(2py —w,)

+ ‘F ..p 2p+2,00 + ‘7//’1:‘ (FL;O‘,(:.] oo) ) '2 sin 2py

Before continuing, we will derive, from eq.{17) of Section 17, more de-
tailed formulas, namely,

andSn

Do = 71: “‘d“r-‘ ) .

@y = “Flﬁfl_:g}l+4F1,ld‘5'1.2+dﬁ1«2d‘5'1.1 dFisd 8y
dz, dy dg, dn, d§, dn, d"x d§

1 [dFu ds,,,] [dr,,, d_sﬁ]
o= G2 ]+ [

+ %[d (sz} dS.l,Z] +r \Fl s} 48, 1]
LU dE dik] T U g dn,

These formulas, taker together with the formulas (26) of Section 17, have /31
given the following expressions:

e 2
}2-02"‘?4(1']-:.;21 10)%,

9
Fig= p.}{ 2 (FLi52pe23,0)?
1,0,
+ ﬁ‘]—’ﬁv]l;g‘lylyo (pdlj:?'—g—il " o —4 Fi-:":;g" h o)
1,0.1,0 dFyq
+ oy (P e (p2ES fz‘f‘ 02 iR 42
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—_ 6F-2p.2v+220) 244 , (F'_;I,’,?., 1 o)‘}

1902 ® 1,0 1.0,1.2 ,
pd ‘(F‘z""”” 02+ FLp% P+1,1,0 F—;r.,un,l,o} o

2
. 1,0,1 0
+lep —9:P+’ IOF—P,r|+]00) -
1.01,0
—4F 0 FLp s 20
FLOI [F] 0,20 1,1,1,0
Ppt1 10 F""P” 00~ 2F 040,00 F 2p 00401 0

1,0,0,0

___F'_ p+l,l@( p AL dFgao0

—p. p4+1,0,0 71
i

—apioLa 1.0,2,0 74,1, 9, .
F"v +1]0FU - U()u, F-"-P+100'
. —-gFhoLoe 1,0,2,0 1,1.0,0
3I—p,p+) I, OF "P P+2 1,0~ 6F_21"2P+21230F—'P:P,+',0,0)

1,0.1 1,0,0 . .
llzu (F—y,pq-l 1,9} F_ ,p.n.o,o} e'e, €08 w,

» U
+ terms in €' %,

‘ To derive, finally, the expressions of Szp and of Sz, we will start from
2~ *he formulas

dS. 2
43 =@, | L2z

dSs,,

dyl {‘1) I T d! AF11\(D"W

-~ waich result from eq.(lS) of Section 17. In this manner, we find

Sa0=— (F'—:. +1,3,0)7 8in 2 py,
dFyo 00 1,02,
1,01, dFyv0.0 _ .0,
S = p*d’F_;" -110{"? iz, —4Fgoa

—6 F—o,. 2p42 2,0

T (F‘.%,‘,;S’r,,l.o)'} ¢, sin (p§ — &,)

\ 1,6,1,0 1,0,2,0 ;
‘ p’d' Flp e, o{Z Floaapsen0 :

g + g (P g sin (090 = )

+ terms multiplied by e' .
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This will finally field, for the variocus values of g, the prircipal coeff:-
cients of the expansion of the function 1;‘*, expressed by means of the coeffi-
cients of the expansion of the function F:

g>4:
1, . 1.m, my, m, —_—
[l mamum — FLme™, as log as i+ m, + m, < 4;
2, m, m, me =
g =0 » aslongas m+m +m,<d;

,m,my, my __ m, my, m —
fmmm — PO ™, as long as 7 + m, + m, < 4;

?. ;.;l,lm, myo__ 0

1. 72 , as long as 7—”—+mx+mz.§2-

qg=3: . /33

flum, mme — F‘A'O'"”"'""", >s long as m -+ m; +m;<4;
Ju i Sl

Jomimm —Q , as long as m+m, +m,<2;
me

2, m, my, Mz

3"’-;"""""=’Foo,n.n , as long as m + m; + m, < 2;

~ I |
S ’ /%’%o,o_.ao.
T q= 2: :
T G mum — FETTR™, aslong as 7+ my + my <23

3 1,0,2,0
0,40 — Bl °-4' 4 e (F22 3
’01'0 F =z: -2, P42, 2, 0) ]

N .2, 2 1,0,2,2
) f3%2 = Fooc,0 _
st 0,22 1,020 - 7,002 :

ozt FRbels + — 75 F2ppeo20F g p120., '
. 2 —3 02, J '
:'\‘ :
KU ‘. 1,0,0, 4 1 0,02 '
o 1y oot= oooo+di 2 (Fppt2,09)*,

l ' 1,0,2,0 1,1,1,0
20 _ plL1,3,0
. /}:(1’, "Fo.o,l.o + 4’ F—p.p+2 zoF_,,pH,l 0,
L . 1,1,1,2
L iy = FRELS,

1,0,0,2
forle = Foiils * i .F_ ore02 Foptano,

1320w PR3 80 + O (Fupita ot
Io,o AL A'x:
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1.2,2,0 1,0,2.0
fpe%0=2 Fygao+ d’ 9 Bt a0 Fib%ta0,00
1,2,0,2
f68%% = Fq0,00,
1,2,0,2 3 1002 1,2,0,0
fo3%2=Fqg: i Fopp2.02F ppr200,
13

1,1,1,0 1,2,0,0
Py pra,0F g 0i0,0,0,

. 0,0 1,2,0,0
=Fo,, '°+42x (F=ip p+2,0,0)t3

-
-
.
.
.
-
.
.
.

.

2,0,2,0 1,0,2
3;8’”'0— p (F—p,p+2.2,0)’»

8 1,0,0,2
olg'”=—p—d P s 4n,09)t,

LLO — 1,0,2,0 1,1
If:o - pd F—P.P+2,'-’.0F—p.p+‘-’.l.0-

/g:g.o,o -~ ;~ (FL;'pfz,] 0)*;

2J8

2,0,2,0 1,0,2,0

123%%= Fg o320 +2 P pf’p+22,oF—p,p+2,oo.
8 dFyd

2,002 5 _ 0, oooo 1,0,0,2
/3:3'0'2=F-°-°-°“‘pwi(F'~p.p+zo, ) ( e 4Fmo,0.0)»

2,0,0,2 1,0,0,2 0
/3 1002 = Fygos + d’ : Flppa20,2 F.z.'.o,;,o,';n,o,o,

g=1:

1480 = Fi500;

1029 1,0,1,0
1693 = Foqq 35—.(F-1p.p+1.1.o)’»

1,0,0,2
/6;3'0""‘ 0,0,0,0 s
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1,10 0 1,0, § 1,1,0.0
I =Foo1e + S F—p,p+l LoFZg pi1,0,0,

1,200 — FL200 4 3 (prioo0
156 10,00 + —u—i (Fpp41,0,00%
J:l‘l

l-,o,oo_,._p—d (Fhp %1105
"020__1‘2_- —_9(F"%30 2
/ pd ( 2p,2p+2,2,0)

1,0,1,0 dF2p 541,10 _ 4 Fh03
+ Flpie,10 (p~—-2; 4F:2%000,0
1

3

dFlOO ;
¢ (Fl—f-,pﬂ Lot lp— d'o 00 ol 8’(2,;8

0,2,0 45 1,0,1,0
— B )-— S (FM2L0, o
—~2p,20+2,2,0 G\ —p, p+1,1,0)" ¢
. 244 v
°ooz.__~__ 10,1.0 1.0,5,2 :
1 {(F~—2p.2p+20.) + F_ g psn1,0F 25351 1,08,

. 1 d
fpyh0= 7 {7’3 (Frgstn0 Fp%%60)

1,0,1 1,1,2,0
— 4 Fhp o Fiphl e

1,0,1 1,1,1,0
2 P o Pl 00— 2 Fa3 b pen 00 Fodpopea 1,0

1,0,1,0 ( pF_‘ ,0,0 dFye o 0

—-p.p+1 1,0 ] R o
2o+, 241,0,0 d:c,
1,0,1,0 1,1,1,0 1,0,2,0 p1,1,0,0
—2F:p e 1,0F0 00— 2F00c 00 F-pg+1,00
1,0,1,0 1,1,1,0
— 3 Pyt 10 Fhdptpra 1,0 — 6 Pllpipsnso FRp g, 0.0)

45 1,010 1,1,0,0
— iz (F3 501,00 F2533,0,0
1

Section 19. 36

In Sections 19 - 22 we will assume, as in the theory of ordinary planets,
that the eccentricity €' and the unknowns €Y and W are comparable in magnitude
to u*

It is then convenient to group pairwise the terms of the expansion of F*,
by putting
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® W = i e

P =Ty w(Fr 4 ViF) 4 )t (B4 Vi FY) oo

- 1

=Fy+nqy+ 1250+ ()

F =Pl + Vi Fsi = D555 ™ gmimomcos (, i+ 10, (2)
Bhm ™ — = [Rizhmmame 4 Vg frigmmm, (3)

The expansions (1) and (2) are analogous to the expansions of F* and F} in
the theory of ordinsry planets (see Secti-n 3). However, *“2re are some diffex-
ences:

In the case of ordinary planets, the indices i, ﬁ, m, Mey, J1, Jo of the

i,ka 12

coefficients Fop, satisfy the conditions (11) of Section 3. In the case of

2
5133
characteristic planets, the indices of the coefficients (3) definitely satisfy :
the conditions
|71L<_Smu ljz|_<_<_m1=eva'l"

lii+7.0<<m +4i—2,
because of eqs.(29) of Section 17. It seems quite probable that, in complete
generality,
‘ s + i <<m + 2¢—2
applies also to the coefficients (3). By extensive calculations, which it is

useless to reproduce here, I actu.illy found that this relation is exact, «t
least as long as

21+ m+m, +m,<<8, ifg>2, (h)
énd at least as long as ) ;
2{ + ni + m, + m,<<8, ifg=1. (5)

In the case of ordinary planets, the quantity lﬁ

is identically zero. For characteristic planets, the corresponding quactity

~l 0,2.0 8! ,0,0,2
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1

‘cancels o oul: oriy :Lf q 2 3; this quantity is of the oxder of ,/ﬁ if o = 2 and is .

.comparabie to unity if q = i.

To obt,a:m the function F¥ which apuears in egs. (33) and (38) of Secman 17 s

-we must write . . :

W

- 3 . >
Tys s Wi, Lk, Tk

instead of
- . Tys é‘fl ‘.'""l §k: i,-k.'

in the expressions for the various terms of F¥ given until now. Consequently,

s . ] . - ium 152 x,-;,. LR2 ‘\_i.,'i,n 1*2 ‘
it is necessary to calculdte the various coefficients Focdyzs £ 12 188,33,

“with thé constant value xf' as well as the quantity 4, using the formula .

7’—;-!=V,.zd. ‘ - (6)

- -7 o - v
< B _ zl

~ Before integrating eus.(32) and (38) of Section 17, we will subject them

to s2veral transformations.

Let us first consider the highly interesting Uartlcular sollrblon in which -

“Sx and T¢ have constant -values. Let 5

. =5 =0 5=0, 130 (7
be this rarticular solutlion.
. The quantity § satisfies the equation . /38
dFr*
=0 (8)

in whose first term, the values (7) of the veriables must be introduced. In

%Y 122

1 .
the coefficients §y,;, = of the exparsion (2), which are iinear with iespect

to /it, we can consider /i as a parameter independent of w. Thus, the first
jnember of eq.(8) is expanded in powers of b In addition, the coefflclents of

the various powers of & are odd in § and € . Thus, the ratio $:¢' can be ex~
panded in rowers of e® and u.

By finally putting

I . -
e =1u €, §= Vi‘ 5o, (9)
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‘with respect to e3.

we can set

(S:e¥ = (So:e)i=p + pP 1+ PP+ -, (—1,2,3...).. - (10)

)

The- coefflf‘lent 1“ in this expansion is & polynomial of the degree s

We obviously have
B ~1 L10. 51020 ; - ) :
= P ="— : BRe ™, P = (p0). (11)

In the theory of motion of characteristic minor planets, the iparticular
solution (7) of eqs.(33) of Section 17 corresponds to a certain soiution wh:ch
depends only on two arbitrary constant'; and on two arguments linear with respect

to time.

Now, we will introduce new variables by pcttirg

=s + l/“. s = ‘/.“ (go + ::’)! '}:__‘ V,‘—;'l"t
. (12)
& = Vad, e = Vi,
In addition, we set: ' /39
4y = ut, (13)
1

—(F*—C)=H, -

w o (1)

where C is a constant selectea in such a marver that H cance.s nut with the
variatles ', W', §", T".

The new canonical system, equivalent to egs.(33) of Section 17, is written
as

dy' dH dr dHd

==t — ——-

Fraat AN R C
af" _dH  dy' ___dH
T W
Fimily , we will put
g' —_ e' cos (u’, 1;' == e' sin (U’p (16)
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Smgiocsd, '=gising.
I view ol the e:punsion of the function F*, it is obvious that the func-

tiori H can be expanded In powers of w. Thus, let

H=H® 4+ « @'+ 12 H® +---, a7

The funct on H*’

has the form
Him = B H7T™ g'm g'm” cos (7' @' + ") :
¥ : (18)

3.7

g rn

This is an even nolynumal of the degree 2m + 2 with respect to &', W, i", I,
& . The coefficient H}%™ is a polynomial in ey.

As in Section 3, this leads to the generul forumla

HJ"" ';f-. o ( ( ) ( ) T;;.T s, m e"'+ml-:m' (my—m’"}
: P, »
: i,m,ay, 3 '3 . (19)
where, for abbreviation, we have put yits)
u, =0 + 4, m' =d Tﬁlr m'=a" + ﬂ",
j' =a,— 5, 7" — a’—-p", ]'" — (z"——ﬂ".

The whole muwbers i, m, @3, Py, 8 in the sum (i9) must assure values that satis-
fy the conditions

121, m> 0, aq, > d, 5,>8, §>0,

loy—8, +a"—3"| <7 + 2§ —2 =

(20)
=2m+2—(a, + 8, + " + p")—2s. -

2

In the sum (18), the whole numbers m , m", j , ;" are subject to the con-
ditions
2<m'+ m"<2m + 2,

lil<<w, i7" |<€m = even. (21)

Here, we alss have
148" +m' +m"<<2m + 2, (22)
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at least as long as

m=0,1,2, ifg>2,

and at least for

Thig results from the relations (2C), considered together with the conditicns (4)

and (5).

Let us finally add that

HIR — BT (23)
because o2f the relation
1, ;v;,m;,m- ~ l.m my, rite
—J1—7 2= Sk .

Below, we give the expressions for all coefficients oi H'°) and of #HY s /bl
derived from the general equation (i9) and valid for all values of q:

0,2,0 ~1,0,2,0 0,0,2 ~1,0,
Hoo" = §olo™", Hoo? = §go™%; -
1,40 ~1,04,0 1,04 ~1,0,
Hggo =800 11,‘ = (So,oo"y

H}'g'oze 1,130 ’_ 2 1,0,4,0 1)
. o (8100 8o p1),

HEMm oy (3L 4 25503050), (2)
Hyo =e, (B0 + 355% o,
HES = B36%0 4 ¢ (B53%0 + BLESp0 4 Bh340pm)
HEEO = 33020 4 e (Bhb™04 iy 0pm 4 430 340 pa)
HEd?= 852" + e (363%° + 3hbb?pm + Fh03%pw)
Hio®= X50%% + e 3h5%%.
We will then set
- @)
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with the notations

Vo= — 285070 = —2(fb020 + Vu 2829
Y= — 280" = — 2(fl00% + Vi 2007 (26)
R TPy P
The expressions of the coefficients f41 , for various values of g, are given
at the end of Section 18.
Moreover, it is well known that b2
Foooo+ Figbi=o
(see Section 3 of Part I).
From this it follows that
vy 4 1", =0, ifg>3; (7).
Yot+" “‘V“‘*‘Uiigzﬂzzd’+(Fh%ﬁ;zmﬂﬂ' ifg=2; (28)
and that
vy + VY is comparable to unity if q = 1. (29)

The expression (25) of the function #®) indicates that the canonical sys-

tem (15) of the secular variations of characteristic minor planets enters in

the general type considered in Section 1 at the beginning of this report.

It then remains to transform once more the equations of secular variations.

In egs.(15), we will substitu*e &', ', &", I" by the variables «' , V',

", ¥" by setting

'/"‘1 §' + ]/:_1 ':v = 91 ey'_’j w"
Y= —V_] y =g'e~ Yﬁ‘”’,
P t" 4 V- l 7/ "“9" e;’:'i ,,,u'

(/’" cu__ ]/___ 1 71" e,. e Y= o

The new unknowns satisfy the equations
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a7 o gy dH 4y _

H - dH
df, du ’ t_{t, =2V la';;;f ’
(21)
dop" —dH 4y
i GO l/__ Sy, _(HA_,_‘ _d‘H
at, = T2 gy ar, 2V g

The function H(*) which enters as coefficient of u® in the expansion (37)
is expressed by

L3
Hm = B HETE™ e s e g, (.32)
For abtbreviation, we have used there
m=d+f, -m'=d+§
PRI (33)

In the sum (32), the nonnegative integers o' , 3', 4", 8" satisfy the conditions

250+ 3 +a" + ' <2m + 2,

{3L)
a" +ﬁ"=evm' (;5)
""—ﬂ'+a"-—ﬂ"l+a'+l>"+a"+ﬂ"_<,,$2m+2. (36)

where the last condition is valid av least form =0, 1, 2 if q 2 2 and for at
leasb m = 0, 1 if g = 1. These conditicns are equivalent to the conditions (21)
and (22).

We have, spez':ifically,
HO = Hy3 g ¢ + HGG ¢y
— e— ?’2'0 (P’ w’ —_— _’:2;(])11 WI' (37)
As in Section 4, we will introduce the arguments

' = t,+79, w' = o t + 771. (38)

where Y' and y" are two arbitrary constants while v' and v" are two still un-
known quantities. We also put
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']"0 = 9’0 e¥-1 v, ll". == Q'o e V-iw s

. (39)
(p"0==9"¢ eV:i ID"’ lp”o = Q”o €~ y-. 1 w.'a
where op and pf are two arbitrary constants.
IL is convenient to consider ¢, y', ¢", " as a function of the inde- ys
pendent variables @b, Vo, @, ¥4 instead of ty. This will then yield
1 d
C =D+ D"
Verdt, "’
with the symbolic notations
f ! _4__ —_ L q_ uj ] ____(_i_ — " __(i'_‘ .
D —“pod.,{’t“ (podl.v’g’ D P "'dl[I"; Yy od(li"a (ho)
In view of this, eqgs.(31) can be written as follows
1)
'—"(V'-D' + )'”D”) ('pfo ‘}7')"“ (;"—— "’o) !")lo (l)’ — 2‘#1 iﬁ%_gﬂ __)
' , : d(H — H‘°’)
, U sy — 3 ' — ' — 4
(’ D'+ " D" (’pn'ﬁ) (» ”o)’/’a 2’/’ df})' (L).l)
)
— (1’”D” + yl Dl) (q,"o (pﬂ) (1’"‘_" y”u)w R p — 2w’l°d(Hdlp"Ii(‘ ),,
— HO
[ D" 4 o D’)(fp" wrr)_ (" —» o)'/‘ Y = ”od(Hd‘[,,H'-(‘)
We will introduce the variables 9", ¥", ©", ¥" also in eq.(38) of Sec-
tion 17. For this purpose, we set
1 d F*_ Fe 1,0,0,0 ) (sz
wdas F* = Fi— u ¥ = 6= Sumam,
m=0
G(m) - \ m,;’,’r m' lu: ‘P 3 '/’”a” ¢,llp:, (1;3)

with the notations (33).

Now, because of formula (42), eq.(38) of Section 17 can be written as
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* 1,9,
d!/'—_x’-a C’r:foooo

dr 5 u- dz* — 1t G, (Lljv)

Let us make some statements on the functions Gﬁ'), defired ty the formu- /45

la (42).

Ev1dently, G‘*) is an even polynomial of the d-gree 2m + 2 with .-spect
A n ",
to e, @, ¥, 0", ¥

The coefficient G?ﬁyf', which is a polynomial in e, is given by the
general expression

m,.m'.m" a) (p\d ?\;, TI et .
g = 2 ( ') (/ ,) —_ emhm—m p(ﬂll—mv’
53 [ 2 2
i, mya), 31,2 “ i dx (14'5)
analogous to eq.(19). The indices i, E, a1, 81, and s take all values that
satisfy the conditions (20).

In addition, the nonnegative integers ¢, D', o', B" also satisfv the
conditions (35) and (34) which latter holds at least form =0, 1, 2 if g = 2
and for m = G, 1 if g = 1.

If is obvious that the functions H and G do not change on permuting ¢'
and ¥ as well as ¢" and y¥".

{"(0)

Evidently, the expression of the function & has the form

GW)n-G°°° 0010 7+ ¢34-03§°7‘¢ &m oy,

In accordance with formula (45), on putting Lhere m = O, the formmlas given be-
low are rcadil: -otained (valid for all values of the integer q):

R H b Ny

2,0,0,0 1,2,0,0
03-8'°=d 3 0 (d 50 0 (}_(_ ”_l_ (1 4 d "fz, 82‘3 2)
' dx} dz} dxt Pe P

Q30— diyoe! _+¢3&%%?(ﬂ,
’ da} day *°

135




Since the general formula (3) as well as the expressions of the coeffi- /L6
{,8u,m
cients f,lji’z, noted at the end of Section 18, are given, we will have

G+ QY% =0, itg > 3,

Conversely, for q = 2, this sum is of the order of /i while, for q = 1, the
same quartity is comparable in magnitude to unity.

Section 20.

In the theory of secular variations of characteristic minor planets, we
must differentiate three ¢ -es, depending on whethes q 2 3, 3 = 2, or q = 1.

First, we will consider the case where
g2>3.

We have seen that the quantities v and v then satisfy the fundamental
relation

vy + ', =0,

as in the case of ordinary minor planets.

Obviously, there is no basic difference between the theory of secular
variations of ordina-y minor planets and the corresponding theory of charac~
teristic minor planets, for which q 2 3. The two theories merely differ by the
fact that, for characteristin planets, the coefficients Hy™" and Gj™;" depend
on /i and that the relation (22) of Section 19 has been established only for
m =0, 1, 2. Thus, in the integration of the system (L1) of Section 19, we can
apply step by step the methods used in Section 4 for the case of ordinary minor
planets.

The unknowns are expanded in whole powers of i, as in eqs.(8) of Section L.
The expressions given by us for the coefficieats of the various powers of w in |
these expansions are still in force.

Let us recall specifically €qs.(12) and (12') of Section L. Let us also
recall that the functions [Vow1], [w¥1], [¥l'] and [@d¥]'] are zero.

The quantity vi + v{', vhich is linear in &, e6®, and pf®, appears,
raised to certain povors, in the denominators in the various terms of the men-
tioned expansions.

In addition, theorem 1 of 3ection 5 is obviously valid also for character-
istic minor planets where q = 3. Conversely, it is impossible in this case to
prove theorems 2, 3, and L of Section 5 since the relation (36) of Section 19
has not been generally proved for al. values of m.

. 136




Maklng use of egs.(12) of Section 19, we can return to the variables &;,
Ny, ¥, n¥. As in Section 6, it is conveiient to introduce the moduli of eccen-
tricity and inclination by means of the furmulas

¢ ='Vﬁ Q'!o: & = y'ﬁ 9"0 (1)

and to set also

= " (1", + V"l). (2)

We will consider ¢', ¢", €', and /. as being of the order of magnitude of
one.

The quantl*v 2 whgch is of the second order oi magnitude, is linear with
resp ct to €2, "%, €%, and w. In the case in which q = 3, the coefficients
of H'') that enter the expression of & contain the quantity /B implicitly and

in a linear manner.
Now, the general solution of the system (33) of Sectior 17 (for q 2 3)

assumes the form

_ 00
Ei=f+doosw + X 3 ARG cos (7w + 5" w'),
k=1 41,41

-8

i

-]
N \ k+1) - . .o
dsinw' + ¥ X AF5 sin g'w' + §"w'),
k-l jlljll

-~

(3)

[

o0
\ 2 k+1 ~ .
5: — & cos w' + z Z BJ(',le ) cos (’r w + 7:: wn)'
k=1 ', 4"

\ 1 . .
’.: = s sm wn+ 3 2 B(E,,T ) sin (7!wl + 7lel)'
k-l L4,

The quantity Z:e', defined by eq.(8) of Section 1G9, can be expanded in /L8
powers of e'? and u.

The coefficients A‘%*¥*1) ang (2¥+D) (k =1, 2, 3, «..) are of the order of
magnitude of Zk + 1 They are rational and homogeneous functions with respect .
to the cuantities €', e€", ¢', and /li. Only even powers of /B are encountered
here. Each denominator 13 a power o of 6, where the superscrlot s is = 0 and
<2k +I-34f § - 3" =+, butwillbes2k+1-51fj - j" # £1, (Here,
the plus sign refers toc the coe{flclents A ?nd the minus sign to the coeffl—
01ents B.) The numerators of Ay g ind By i are odd polynomials in €', e",
and e whi?h contaln t o factor & 'ed’ if 'J + j" is odd and the factor

Y if 3 o+ 3" is even, The other factor of each of these numerators
is a polynomial homogeneous in €'?, ¢", ¢'?, and u.

As in Section 6, we still have
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A5 =0,  Bf{ii"=0, (k=123 ...).
In addition, the coefficients
AGSH, (k=1,2,3,...;

vanish if € = e" = (!, since the speciai solution obtained irn that case must
coincide with the particular solution (7) of Section 16.

Finally, the fractional irequalities that truly contain a divizor °° are at
least »f the order of magnitude of five. The fractional coefficients of the
ordar of magnitude 5 are

5,
A%, 4%, B, B‘f’g_p

16

Lst us now pass to eq.(4L) of Section 19.

In the function G, we will replace < , ¥ , ¢", " by their expansions iu
powers of .

This will yield the expansion

B
=9 é giit
o iihd (1)

where g“’ is rational in ey, @, ¥, @', #. as in Section 6 (pp.39-rlof /LY

Part I), we can demonsurate tha.t the rational function g ') i3 of the degree
21 + 2 wlth respect to eo, %, &, @, ¥ and that, in its denominator, the
quantity v} + V' enters raised to a power which is at most 2i - Z for terms
where 3 - j" = 21 and at most 2i - L for the other terms.

In Section 6 (pp.xl-Lk of Part I;, we gave, for ‘he argruments of the vari-
ous terms of the functions g“ » an upper limit for tie sum [ + (5., 1In
the actual case, it is no longer possible to prove the existence of this 1limit
since the condition (36} of Section 19 has been proved only form = 0, 1, 2.

Nevertheless, we can investigate the .Lunctlons g‘ ) g(” N a.nd g(z) in
more deta’l. We will use the denotation G *’for G *) by wr-ltlnmpc R ?9), o, %'
instead of 7 , ¥', ©", §*. Thus, the wanted expressions of g , , and g*®

will beccme

00 =GO =G + GLU (g + W)+ CLE @ o " "),

!
D= QM 4 Q™10 ‘P_!.’!’- 'l’n‘l (5)
=GR+ G T Ny, )
-+ Gg: g'o('i!"n (I”l + ’[',9 ‘r’". - U’"o 'l)"l - ‘I’"o u’"l)l (/)
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w7 dGm d
g¥ = G® + "d'[" Vo' + ‘f dl[" ¥,
dGm d(‘(l) —
tr ':""od'[”o ':" o‘f H + 'f d'."’ f,l!

X ’4I L’"»“
+ G 10( 'I s; + r ;__.I_)

A 7o
, (7)
+ G50 [‘r’o’fr] + {F. v"]
o
+ G oy o ¥y o 9 Y
( f L’J (,.u '{"' -
+ oS ey + Iy W — W " V).
In £%, one couid also exgect the .erm [0

Go® (o ) + [r's W1~ [¢ g "]~ (5" ¥,

but this long-period iterm vanishes identically. In fact, in the function H
which is constani because of the first integral H = h, the long-period principal
term which is nothing else but

7 H& ;.'0 (Yo' + [ ¥:]— G B U0 v,

must vanish.

. (c .. e s I
Evidently, ¢ ) is a polynomial in o, ¥, oV, #¥, while in its moromials
L. 13y naun, Jhgn
o %o Po ra” we alwa’s have

lua_;}v + a"_ﬁ,"l + av . ﬁ' + “n +[3"_<_.<_2. (8)

Let us recall now that the long-period varts of the functions (v021)
(gh¥1), (wdel), (%)) are zero and that the short-period parts are given .,
formulas ent_(rel sn.r:_Lga" to the formulas (12') of Section L. 'Thece four func-
tions, like H and G '), are polynomials in @y, ¥, ¥, ¥¥ whose exponents
satisfy the condition

la’_ﬁ"{‘ an____lj'vl +ar +ﬂ' +au +ﬁ"5,€4- (9)

This sare relatlon is also valid for the polynomials c,,] and ‘h since, on divid-
ing Vo by ¥o and on dividing B ¥} by P 2 the degree o' + 3' + o™ + 5" of any
term will diminish by one whereus )I’J -3 +a" - 3" wild be decreased or in-
creased by one. Thus, we find that g’ is a polynomial in ¢h, ¥5, @', ¥
which satisfies the condition (9).

Let us now pass to g(a’ . It is easy to demonstrate that the part of this
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funct J.on which does not depend on [¥53:] and [@hv5] is a polynomial in <5, vo ,
oy, ¥4 which satisfies the condition

lal_‘dl+a'!_‘3nl+“I+‘?v+un+ﬂ'l—<—£6. (10)

Cenversely, the part of g 2) w‘ﬂ ch cor\t.ams the functions [%5¢ ] and [« ve ]

is rat.;on;;l 'nth the deron;nator ("1 + vi‘) Iet us afd here that, in this /51
rart of g‘“’ , we have j - j" = +1 ana, consequentiy, i # i".

- Fi{.all;:, we (can conclude that no terms with ver:r long period atoea“ in
g, &Y “and &2, 1In fact, for these terms we would have 3 = =25 >0

and, berause of eqs.(s), (9), and (1C),

85 <<6,
from which it foll ows that

$=0.

Ncew, to obtain the expression of the ergument yf' s, we Will proceed exactly
as in Section 6 (pp.,3-1L50f Part I). This w’ll lead to the expansion

yr=nt+c+ \/‘ Z CEX, sin (j'w' + 7" w"),
k—ll il

which must be approached from the formulas (3). The coefficient C}’z}.? is of
the order of magnitude 2k; this coefficient is rational ar1 homogeneous with
respect to the quantities €', €', ¢ , and /4. Only even powers of /i are en-
countered here. The denominator is a power of 0° of &, where the exponent s
is 2 0 and

<2k-—3, iff — 3" =0;

<2k 4, 5 — ' =1
<2k—8, #j—i" > L.

The numerator C§ I JS an even polynomial in €', €", and &' whch contalns the
factor €' entd 3p 3 - 3" 33 even and the factor e €"" enlyp i - J" is
odd. The other factor of the numerator is 2 })ol,,'z\omlal nomog—*neous in €'%, e"?,
e'af and . According to what we know of g s E and r the coefficients
cy? g and Cf,' y are polynomials. The fractional mequahtles of tne longitude
are at least of the order of mgnlt.ude of six. The fractionel coefficients of
the order of magnitude of six are G(a,a ’ C.1)2 s and (‘ag) ¢ The first two coeffi-
cients originate in the ratlon?.l part of the function g ), while the third co-
efficient has its origin in (g

The quantity n is designated as the absolute mean motion of the planet /52
and can be expanded in the form of
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T N | R | BT .
n ==n" 4 0 4 0@ L (12)
We have, speciticallr,

1,0,0,0
”dlfn,o,o.o

) e g~ —3 ) e 0
n® = 273, ne = — dzt ’
— 21 i0] 0 1010.0,0 0.2,0 "
= —2[ig®]] = — u*(Goo” + Goi® (e — ;)
2,..0,0 1,0,2,0
= “,dFo.o, %0 (e e"’)dE“J-"‘,°
dx; ‘ dx?
+1,2,0,0 ~,11,0 5-1,1,1,0 1.0,2,0 1,1,:4,0
__“ew{é!&“&ﬂ,_Qdf%Ahjfmmhv+dfhaquﬁhm1w?
' . M ),0,2.0 * “\r020] (0
dz; dz}  Fyode dzi \F§oso

exactly as for the ondinary minor planets. The quantity n(EZ)(k =2, 3, «us)
which has the expression n' 2%’ = :*[[g'* 23] is of the order of ragnitude 2k.
The quantity is raticnal and homogeneous with respect to € 2, €"°, €' % and .
The dencminator of n'**’ is a power o° whe{e the exponent s satisfies the condi-
tions 0 £ s < 2k - 8. Thus, 3(4), n(s), n? are polynomials. In addi.ion,

the n' ) (k = 1, 2, 3,...) obviously contain & as a factor.

As in the case of ordinary minor planets, we must differertiate, for the
characteristic minor planets with g =2 3, between two categories: regular planets
for which the divisor v} + Vf' is comparable to unity and singular planets for
which this quantity v} + v{ is small (of the order of /& or less).

The integration method used in this Section is applicable only to ordinary
planets.

Section 21.

In this Section, we will treat the case in which

q=2.
We have seen that we then have /53
k) nl ]6
e FE R o) + (F235h 0007, (1)

Ve  pd

Let us start from egs.(41) of Section 19. Since the quantity vy + v is of
the order of /i, the unknowns must be expanded in powers of /h. We set
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€=l + () Ty + (1) g F ey
¢ = @ (W) 4l (W) 4 P

"=y () ot () Sty ity

4
* ’, Ul ’ !, ' ! ! U 2
W= T+ () F e (O ) B Y (2)
o= ',v‘, + (‘“‘v: ¥ =) + u ,,'l + (!‘:'3 ',"',‘) +‘"!,,-2 +(.“5,’: ,,'*) + ey
,'-. —_ ,'u', + (‘(l‘:: ,’u,‘:) +.“ "nl ‘*' l‘"“, ""J") +!‘2 "”z + (‘")" "u."'\ + ey

7t will be shown below that the terms in parentheses vanish identically.

We will introduce the expansions (2) in egs.(L1l) of Section 19 and expand
the two terms in powers of /f. A comparison of the two components of the coef-
ficients of the same power of /& will yield a sequence of equations Ly means of
which the various coefficients of the series (2) can be determined.

e A

Let. f be any function expandable in powers of 5 Yo , oF, ¢3. 1In Section 4
(pp. 21 and 22 of Part I), we defined the parts [f], [[f]], and {f} of the func-
tion f.

Below, it will be useful tc employ the symbolic notation

D s\ D D G)

One more remark should be made here: It is obvious that the derivative

Lok
D]

contains the factor /& because of the relation (1).

In view of this, let us first cousider the independent terms of u in
eqs.(41) of Section 19. These terms vanish because of the identities

Dy ¥,) =0, D(¢" ¢'y)=0.

Let us then compare the terms miltiplied by /B. We find the equations
—~D \’4"0 'f"l.':} — ""I: w’o ”"o =0,
D ' u"‘l:} — 'y, ¢ Yy =0,
—_— D{l,h".l ’[’"l[;) —— 1’"‘:, q'lln ’p”o — 0'

D ((p”. u’”‘l’} - ””’.’!’i’”o 4'”0 == 0-
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These are satisfied by putting
= My =C;.

(W) = [ ) = (W™ =ty g =0, (%)

Sc that the terms with the factor w shall varish, the following equations

must e satisfied:

t ] r r r . 1 dH(”
—D {lr”o '/’1)"— ';7‘—“ e [‘r"o‘/":]_‘ r, l-['u 0 = 2(400 _d—([:'_
d HY
D" 0W1}+_ B D[’/oll!" ]'_'" ‘f ‘l’ = 270 d-'—‘
- 1 v o ; d H® (5)
— DW= DI = 2
m
D:"Y" " \ + l D [’f“. l‘.""l’ﬂ]— ,,'Il ’I’How —‘. ,’llodilu -
Vu ' dg
In view of the expression of (#?) ] which is a constant, egs.(5) are /55
satisfied by putting
o
o B w2y 2B,
(6)
" o GLHY " ,
roy=— l["['[dll/';‘]— —4[153'"/’ "/' —"/105"1‘.'!’ —2H, (1)3‘2'

[‘f" '[' :] == [’/‘o oy l]"['pu '/7”‘:]“[',’0 ’l: ==- 0; (7)

lm'm"
l':"’o'/ y == “27 o ';7,”1" m,
’ 2 20’ H'm" m
('I‘o‘l’:):: 27” +;vvru mt-
(8)

(' =5")

7 1’ + ]" Il ’

o 7, m' mn
W =— Z 2#'}]

l "
24" HY ™

[T . =& iy
ATy 27-',, Fy, m.

As before and for abbreviation, we have set
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(.‘Jz —_ (/,v.ul lp:.lgv ’l':u" ‘l’: L e;q e:m" ey:‘iu.wv +j”w”)_

The functions (8) are even and of the degree L with respect to &, W, Yo »
@, ¥¢. The first two functions as well as the two las% ones are permuted on

permuting ¥ and ¥o as well as ' and ¥'.
The equality of the terms in uag in the two members of egs.(41l) of Sec-
tion 19 is expressed by the equations

— D, oy — 1’/1’ Dy ' 1 — ¥, Uy gl = 0,
1

D'y Yy + ‘} Dig' v\ ] — "y o'y Y, =0,
1
woom 1 v v o
— D{Y" ¢"sy — i/u D", 1= "5, 9" 9" =0,

D {‘P"v w"'h} + Vl - D[’P"o l1'1"1] - ”"’.':'p"o Vj'o =0.
u

To satisfy these equations, we must set
1":"z = v":,, = 0;
Wer' 1=I[y\s ¥\] = [4'"'0 "\ 1=1[y" ¥'\]1=0; \9)

{‘p’o ‘P"l:} = \"/’ ,o 'I"’!:} = \'w”o ‘/’"’.':} = {7’"0 "‘h) =0.

Let us now proceed to the power w?. The corresponding equations are as

follows:
r l ]
—D{Y gy — i;il D{Yop) — v, Wy =y, 4,
1 , R
Dy ¥} + Vi Dlg'y ') — o', gy 'y = o, B, (10)

y ’ l ’ 7
—D{y' ") — V‘l: DY " yp] — ", ", ¢ =y 4",

- 1
¥y + V;c Dig" @'"y,) — v, ", Yy =gy BY,.

Here, we used the notations (15) and (13) of Section 4.
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In the case of ordinary minor planets, we have demonstrated the relations

W, 4L )=, 44511,
['s B2 1=[vs B1],
[4 A" )= 12", 4731,
[r's B 1 =[19" B')].
The proof, which is given on pv.2; and 25 of Part I of this research, remains

aprlicable also to the case of interest here, because of the relation (22) of
Section 19 which is valid for m = 2 (in the actual case, where q = 2). /57

In addition, the functlons i, A2 and @B as well as ¥YAY and $&BY are

vermuted on permuting ¢p and ’4:, as well as ¢ ard ¥¢'. From this it can be con-
cluded that

[[w,u A'z ]] = [[(/’,o BI:]] )
(¥ 4" 2] = l1g"s B")-

In view of this, egs.(10) can be satisfied by putting

WA (CZ¥ 1)) JO R (AP 5 P (11)
7 ¥ ! 7 ¥
ol =Ip's ¢s  =[¢og"s]=[¢" ¢'s]=0 (12)

and by giving, to the functions
Woehy, ¥, Whee's, @l ¥} (13)

certain well-defined expressions. The first two of thcse expreasions as well as
the two last ones are permuted on permuting % and jo as well as @f and V¢ The
functlons (13) are even polvnomlals of the siyth degree with respect to eo R % R
*3’ v, ¢ The quantltles vh and vé' are poéLynom.Lals of the second degree in
&, Po, ¥o and o8V, i.e., in &, 05" and p&”.

Let us then compare the terms containing ™ in the two members of eqs.(L1)
of Section 19. This will yield the equations

1 U ]
—D \":l"o '/’"i:} - V' - D[q"u ‘I"z] - ""‘:’z Y, '/”o =0,
’l
! ) ‘ l' ' !
D gy ¥y + Dy ¢'3] — Vs, oply ¥y =0,

Vi
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=D Wy — Vl;z Dy}~ ey o gy = 0,

Diple sy + vlli Dy" g, ) ="y 'y = 0.

It follows from this that /
1"1‘, == V"a], =0;
Ve 93] = [7s ¥il= W% 9"] = [¢"s ¥"] =0;
{V’o (/’"!} = L‘po w'l} \"p” (I’" z} r'p”o (l!}”’lz} =0. (1[")

The next step willi furnish the quantities

vy, 1'1", (15)

as well as the functions
Wl [ ], (W) [ ¥adi (16)
Wog, W vy, W o'y (@' ¥ (17

The second —iembers of the equations [analogous to eas.(10)], from which
all thece Juantltles are determined, are even and of the elghth degree vith
respect 1o &, Th, Yo, o, ¥'. It follows from this that vi and v§ are poly-
nomials of the third degree in € 2 Oo , 6&% and that the functions (16) and (17)
are of the eighth degree imn &, %5, Vo, @, ¥

Evidently we can continue in this manner without ever being stopped.

By induction from i to i + 1 and proceeding approximately as in the proof
of treorem 1 of Section 5, we can demonstrate that the quantities

7';' "'2: (k=697:8v .e) (18)

2 2

are polynomials of the degree k - 3 with respect to €3, po°, and od® and that

the functions

[4”0 7’;:;;1} ) [’/"o l/’;g;-l] , [4’"0 f/”liz—_l_], [f/’", 1,0:.2.1] ’
(k=6,7,8,...)
{‘/"o ‘/’;;} ' {’/"o ‘/;E} s {(!'"o (/’S} ’ {’/’ ° lpk}

(19)

6

k2




are polynomials of the degree 2k - L with respect to e, ©h, U5, @', V.

After having formed the expansions (2), it is easy to write the solution /59
o the canonical system (33) of Sectﬂon 17. let us recall that the variables
¢ , ¥, %", V" and the variables &f, T¥, 3¥, T are linked by the formulas (12)
and (30\ of Section 1. By putting, in egs.(?),

& 3 cadr .
yé(p;f:! = E A;.fj)_',,ev—nu'wf;'wv),

2 N
(k=3: 5, 6: 7!-'-) (20)
‘u"_‘z (p;_‘ = 2 B(kf,,,el/—f(i’-o'ﬁ"w"),
2 j lll
and by introducing there
¢ =Vug,, &= Vuo'y, ¢ =Vue,, (21)

the general solution of the system (33) of Section 17 (for g = 2) will assume
the form

3
& . 0 . .
£ =5+ dcosw + 2 z A}_}-H cos (j w' + 5" w"),

k=3,56,... s, j"
" (K
Nt = ¢ sinw + }_‘ 2 AP sin ('uw' + 7' w"),
k=3,5,6,... j,"
e 1" " g ( (22)
&y = £ cosw' + Z ZBJ:J” cos (j'w' + §"w'"),
kw3,586,... §', "
o *
Nt = e'sinw" + 2 3 Bih sin (7' w' + " w").
Kk=3,5,6,... 5"

The quantity E:e', given by eq.(10) of Section 19, can be expanded in powers
of ¢ ° and . [The coefficients of this expansion are rational in /i since the
coeflicients of the expansion (1) of Section 19 are linear in /h.]

The qwcntltles Ay ywand By y-are of “he order of magnitude k {considering
€', <", ¢, and /B as qpantltnes of the first order of magnitude). These are [*_
odd polynomials in €' o €", ¢ with coefficients that are atlonal %n /M. The
quantities A®) and B"®) are of the third degree, while A'° nd B are of
the fifth degree with respect to e', €", e . The degree of Ay W (k2 6) with
respact to e ’ e", e is 2k - 5if § - J" =+land 2k -~ 7 if § - 3" # +1. The
degree of B, blkz 6) with respect to e, e", & is 2k - 5 provided that §' -

- " =] and 2k - 7 if ' - 3" # -1, These polvnomlals contdln the factor
W™ 5p 5 4 5" i3 odd and the factor e e el 5p & 4 gm i3 even. The

other factor is a polynomial in ¢' s €", and € . As soon as k > 6, the
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quantity /& may appear in Ag;‘ }.. and Bf,;"}" raised to a ne - lve power

InAJ.J.-wehaVeS=k-5ifj'—j
BJ- 3“we have s = ¥ -~ 5 if 3 - j" =

We still have

o0, Blazo, (k=3,567,..),

(since the functions v/, !fk_.1, gy %4, W' rk—1, @' Yr_1 do not enclose any constant
term). T z

In addition, the coefficients
A58 (k=3,5,6,7,...)

vanish if €' = €" = 0 [since the special solution which is then obtained must
coincide with the pasticuvlar solution (7) of Section 16].

¥
4
K
3

Among the coefficients that contain /i raised to a negative power, the most
important ones are those of the sixth order of magnitude, namely,

4(0)0 A(G) 2 b.fo)
“R=s ==z

~|’

(8]
BY. ..

They are of the seventh degree with resrest “c ¢, €"; ani €' .

. t . . o
Finally, the arguments w ana w ‘hav: Lle form
W= L+, W' ="t 4 .

In the expansions (2) of V' and v", the quantities /61

k . L4

b

' 5
oy and !‘2 Vi
2 2

are of the order of‘ ma.ggltue k. In = udlon, these quant.lt*=‘s vt polytomials
with respect to €' %, ¢", ad €'?, while . .y and wv) are of i Tirat degree;

uav!; and b°W are of the second degree; finally, y: » and (for k = 6,
7+ 8, +..) are of the degree k - 3 in ¢'?, 2 )
Let us now pass to eq.(4l) of Section 19. ¢
In the function G, we will repiace @', ¥', ©", ¥" by their expansions (2).
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On expanding in powers of /i, we obtain

G = 2 ‘u"' G("") = 2 ‘“'fg(‘;)
m=(

(23)

= g0 + ugh + 129 4 uf o3 4 3g@ 4.

It is easy to give the exrressions for the four flrst terms of the expan-
s'lon (23). Let us denote G™ for G by writing ¢h, ¥, @', ¥ instead of
o, ¢, 0", y". After this, the mentioned expressions obviously will be

g9 =GO = GLY° + GTE° (s + W)
+('02("P'o'/’ +GO\,-(11° lp"\),
g = GO + G’”°(fpl + ) 4 G (W + o W)
600 Wy + 9" ¥,

dG dGw . dGw . dGw
(@) . (42 v 42« L4 L 46w q]
9 G+ d /’ dwlowx dr’,o'px d‘puo 1 (%)
GLY° (s + ¥ + CRE° g v + 6RO g Y
Gg:g'o('/"o Pt ¥+ G(o); 8'2('1"”0‘/’ AN w"':)p
@ _ ([ o] [w..w])
’ Mo /62

6oz 0([‘!, , ,r,‘] + [,/\'0 ,’,,;:])
e ([0 5]+ [ ).

As in Section 20, we can sase that g(o) R g(l) , and g(g) are polvnomials of

the form

\ I(Y 3 ! ] " a3
S v e i,

in which the exponents ' , ', o", B" satisfy, respectively, the condltl?ns (8),
(9). a{xd (TO) of Section 20, From this, we can conclude that [g'°’ ], [g'!
and [g'?’ ] are 2-nstants.

It is sasy o demonstrate that [g'¥’] is of the order of /i. In fact, the
quantity Cgp cﬁ',f-’,"’ is of the order of /i for q = 2, whereas the function

[ll"o ‘Fg"’ ot ‘l‘g—'lf"a ’1’5—‘!’"«. 'r"'é] is also of the order of /i, because »f the first
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integral ¥ = h.

It is obvious that g®’ is an even rolynomial in e, b, ¥, &

state that this polynomial is ol the degi=e 2i ;‘-75?. as lorg as i > 4.

He
He also

state that the terms of the degree 21 - 2 of g 7"’ are terms of the degree 2i -~

- 2 of Lhe function

_ el
e T + e

v Y T
et (] « |5 4])

+ G&S"([s&". i} + fe ¢])

In fact, the function g‘ Y g coizzosed of terms having the form

e P e R ST A P I B
2 2

n ] . d>im +n Lar-gn )6("')

2@ e A By ) ( d

.m',— Ne om .
l[; s‘,";- :'[g

where the exponents satisfy the condition

\“ k—l 1 r ” . i
e 2 (m..,l-i- k1T My + Nz -rm=§-
£k=3,5,6,...i+1 "2 2z kN KN

(25)

133

(26)

(27)

According to the above statements(pn 1u3-1.6),the functions tp;"_._l, Fr-1, Ti1,
2 N "9~

Yx— are of the degree 2k -75 as longas k = 5,6 ... .
2

Thus, the polynorial (26) with respect to e, %, Vo, oF, ¥, is of the

degree
I — :3(7’.’l + nll + m"‘ + n"l)

"*1‘ T ? " "

+ Y (2k—5){me—y +m: g+ My + ﬂk_:_!)
r ] —— - ——— -
kS 3 2 2 2

+2m+ 2— E(m' +7n' +m"+na")

=2m, +n,+m +n)+2m+ 2

+ 2 (2k"— 6) (m;!_l + n'!,f.! + m;_,'zl -+ n;___l)'
Kk=3,5,6,...i+] 2 2 2 2
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In view of the condition (27), we nave
I1=2i+2—2m—2(m', +n', + m", +2"))

i+l .
H . R " “
—4 \, ‘ﬂu_l -+ ng— + m;f..} + Nx—-1] -
Py e L 2 2

Consequently, we always have I 5 2i + 2.
It is rossible to have I = 21 + 2 only if
m=0, 2(m'+n’+m"+u”)-=0

1.e., because of eq.”27), onlr for i/2 = C.

It is poswitle to have I = 2i caly if /6ly

m+(m', +n, +m" +n")=1,

i+l

5} . . " i1}
2'. me_y + ne—y + May + nt_:j) =0
k=5 2 e’ E 2

i.e., because ol eq.(27), »nly for i/2 = i.

It is possiviec to have I = 2i - 2 oniy in one of the two cases (2) and (s):

(@) m+(m',+n, +m", +n")=2
'."-3 ! e '
— (mk—_g + nx—_1 + mr—; + nk—l) =0;
kb 2 2 K3 KR

(3) m -+ (m'y +n'; + m"y +n",) =0,
41 s
E M~y + Mg + My + nk—l) =1
k=5 2 K3 k3

The case (@) can be realized only if i/2 = 2. In the case (3), the function (26)
reduces to one or another of the four functions

45" . dG” » 4G v dGY
gy Yiaw,  Tiagh Yiawy

It follows from tnis that the rart of g 42 , which is of the degree 2i ~ 2 (if

15




i > 4), is present in the function which is the sum of these four functions or
else in the function (25).

h, the terms of the degree 2i -

Finall;, because ? e first integral H
as factor.

- z in the function [g ] obv;ouslj corain /B
Now, we can write th2 various functions that appear in the expansion (23)
in the form of

g(‘:) = 2 g}é}" e‘V—-_l (' w 45" uw'), (28)

#.i"

hccordmg to the above ctatements, the quantity gs-fl]?..) is an even polynomial /65
in pp, oF, and & . The degree of gy, in is 2; the degree of ,-1 y is k; the degree
of gy 3!: is 6; the degree of g\,vf- (fori>L) is 2i -2if [§F - 3" =cor 1,
and 2i - & if |5 - 3" > 1. Finally, the part of the degree 2i - 2 of tke

function gs-"?..) includes /i as factor.

In view of the expansion (23) as well as of the expression (28), eq.(iL)
of Section 19, after integration. will yield

o "1 +1 g(t .
y: =nt+s 2 " ? ” + 7:p'j’u sin (}'W' + j" w")'

3" i=0,2,4,5..

(29)

The integer j" is even, so that we have j' j" # O. The quantity c is an
arbitrary constant. The expression of the constant n will be given later in the
text.

The quantities v and v" are expanded in powers of /i by the t.wo last o“
the equations in the system (2). We will expand the quantity (j'V' + j*v")™?
1'n powers of ,,u.. Then, two cases must be cifferentiated depending on whether
§o=3"ord #i"

We will assume first that

7'1 =7'" =7
By puttiag, for abbreviation,
w;‘ + r';:
T k=24,6,T,...
T Rl )
4
we can set - .
3
L S '_‘_/;‘.‘_ - {1 vy r iy,
FOM ) Vuglretr o

-1
+y§ 1l,+4t’7;+-"} (30)
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= } {0}1‘) + 3';6){” + 1 d® + 513 5,@) + } .

Vu

We will then seurch for the degree of the polynomial 65"2) . This function is /66
comnosed of terms of the form of .

n
ny +1
S T S (1)
i
2

where C is a numerical constant. The exponents 7, %;...7#1  satisfy the condi-
tion 2
N_-‘l
2; (k—1) e = 8. *
k=2,4,6,7...

We Inow that v, and v, are of the degrees 2 resp. L and that wp is of the de-
gree 2k - 6 for k =~ 6, 7, ++. ~ The degree of the term (31) conseguently will
be

541 41
N=2n+14n, + 2(2k—6)n¥=2s——2 n,—4 E.n,;.

k=0 k=6
We therefore have

N<2s
and

N=2s
by putting, in eq.(31),

n =3, n2=n’=...=-nfi__1=0_
2

Consequently, we see that Cf ¥3) 45 of the degree 2s with respect to Po » 08,
and e .

Now, we will put
'. U J Ui i
53 =93 + Vi g,

where the first polynomial is of the degres 2i - I and the second is of the
degree 2i - 2, with respect to pp, pd, and e .

We know that 67
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o3
gl(j)zo
By making use of the expansion (30), we can introiuce into eq.(29)

& “;'f'l (')
}

*)
7(v +1/") ,‘21 Cii . (32)
by putting
k— —1 k—-— -2
c——it 3 JG)(g,f, 2 )y g ’). (k=7,8,...) (33)

3-0

Obviously, the quantity Cé,k} is of the order of magnitude k. According to

*2) | (:2271) ang AX=£%) , we can also con-

53 ¢
clude that CS,‘,‘ is an even polynomial of the degree 2k - 6 w1th respect to o ,
o8, and e or, if preferable, with respect to ¢ , €", and e .

what we know of the polynomials &

We will now assume that

7'1 > 7‘"
Then, by putting for abbreviation
7-1 ’,;‘ + ]-n v:

i — Vi

7"+7”o ¥

we obtain the expansion
l *"—1"7""‘-‘ {l + My + H-’ ¥y
? ” + 7" y" ]I ylo + 7"0 ‘V".

+ 13y + !434’1 + ---}m'
: (L)

0 4 O, Oy + w0+ pdofE), -

let us then search for the polynomial 6,- 42> with respect to py, pd , and & .
This polynomiai is c.mposed of several parts, having the form /68

S TR (35)

.
L 2
where C is 2 numerical constant; the integers ny, me, ... nys; satisfy the rela-
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tion-

2
'
2‘ kn;;:a.

k=2,4,67,...
The part (35) cbviously is of the degree

N=2n4+4n;, + \ (2»{——6)nk——23—"n,—4n —Gan

k—d k=8
It is possible to have:
N=%2s , only if n,=n,=--:=n;=0.
i.e., for s = O;
N=23-._2, M r n,=1, nz=n3=n.‘.=n;—_—_(l),
i.e., for s = 2;
N=2s5—4, L 2n, + 4n,=1, n,=n,=-~='n;=0,
i.e., for s = 4.

For the other values of s, we will have
N=23—6 by putting =Ny =-=n =0, n,==1,

Consequently, in eq.(3L), the quantity 5”.. is of Jhe degree 0, while 6,- g is
of the degree 2, 8~ u 1s of the degree L, and 6§- l?-.) for s 2 6 is of the degree
28 - 6 with respect tc po, PY, and ey .

We will now put, in eq.(29) and making use of the expansion (34), i)
°°| "';H g,( }u 3y ) “ oo
- ) Crn (' #7") :
i=0, 224.'5 7 o+ k—a.%e,‘t,... (36)

Here, we have used the notation

le:Z
C}r ’J” == __‘“| 2 6( T y!(' ,” ) , i ’)7)

=0

(k=2,46,7,..), (="




This quantity is of the order of magnitude k; in addition this is an even poly-
nomial with respect to p5, od, and e or else with respect to ¢, &", and ¢ .
The quantity Cg-, }.. is of the second degree; Cg.f?,.. is of the fourth degree; Cf,-?}.. is
of the sixth degree; firally, for k = 7, 8, ... , the polynomial c§., jn is of the
degree 2k - 6 if |3 - 3" = 1 and of the degree 2k - 8 if |3 - j'| > 1.

Now, in view of egs.(32), (33), (36), and (37), the expressicn (25) takes
the definite form

a0
yi=nttec+ X N Cfsin (f'u'+j"w") (38)

k=2,4,8,7,... §', 5"

This is a formula analogous to eqgs.(22).

The quantities C{*}. are of the order of magnitude k (while considering €' ,
€", € , and /b as being of the first order of magnitude). These quantities are
even polynomials in €', €", ¢ with coefficients that are rational with respect
to /E. The polynomials c§., .)1n are of the degree 2; C,-?ju of the degree L; cﬁff,.. of
the degree 6 with respect to €', e€", €' . The degree of Cs-kan: (k 2 6) with re-
spect to ¢ , €", and € is 2k - 6 if |§ - j"| = 0 or 1 but only 2k - 8 if |3 -
- 3" > 1. A1l these polynomials contain the factor ¢W#1¢i"l, if j' is even and
the fa'cztore' dlitgtimif j is odd. The other factor is a polynomial in 2, €™,
and e “.

As soon as k 2 7, the quantity /i may appear in C§-:3u, raised to a nega- /70
tive wower

(Ve
According to <he above statements, we have s = k - 6 if |j' - 3% = 0 or 1 and

s =k - 8 if Ij' - j"l > 1. Among the polynomials cg.f}‘. that contain /i raised
to a negative powsr, the most important are

‘33)2 ’ 0(11.)2 ’ O;,,2
(as well as the three C% _,, C% _,, C% _, which afe, identical to these). The
first two polynomials originate ir the function g <’ Z—/gg(s )] [see eq.(24)].
The last polynomial has its origin in the functions [£'®*’] and [g(a’ IR
The absolute mean motion can be expanded in the form of
7=l 4 @ g 4 on® ...

The quantity n'®’ (k =4, 6, 8, 10, 11, 12, ...) which has the expression

a = — -, (k=4,6,8,10,11,12,..]),

is of the order of magnitude k. The quantities n‘*’, n‘®’, n'® are polynomials’
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of the degree 1, 2, resp. 3 with respect to e'?, en? s, and ~2, For k 2 10, ¢
is a polynomial of the degree k - 6 with respect to ¢ 2, €™, and €' 2. We have,
specifically,
_ d350"°
O = g3 n?®=_—y e
= — et [[gO]] = - (650° + 6850 + G50 er?)
EPLE SN2 Ll T
dzy dx} dz

Tdzt T wnozoT T e
dz} S0e dz}

~1,0,2,9
%0, 0 " ’

ABEY_pd SRR a e (e,
Seclion 22. 11
Now, we will study the secular variations in the case in which
g=1
In this case, the quantity vy + V' is comparable in magnitude to unity.
The quantities Vo and VY depend on the parameter xf" (or else, if preferred,
on the mean absolute motion of the minor planet). By varying this parameter,
it may happen that a divisor
R (1)
becomes small (of the order of p or smaller).

In this Section, we will assume that the divisors (1) are not small as long
as the integers j , and j" are not both zero.

We will again start from egs.(41) of Section 19. In the actual case, we
can there introduce expansions of the form

=0+ ug, + e+
Y=ot n +urdy -,
="+ up s+t +o
W (2)
=y Fuv M,y +

P ""o +p "'"|+ u? v", +oe
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On expanding the two members of the mentioned equations in powers of u and com-
paring the coefficients ¢” the same powers, we find equations that successively
determine the terms of the expansions (2).

First, the equations are satisfied for u = O.

To have the terms in i vanish from the considered equations, it is neces-
sary that /12

dH"
— D) — ¥, Voo =200, 2,

d HY
Dy ¢y — ', oo =29 T{'P—'o—

' aEw (3)
_D(wn(I,l)_uvlwofpo_2(]lod‘p,, ’

m
D ((p" w" )___ yH "I’"olp" _— 2 (p ° (fil‘:" -
As in the preceding Section, we have put
D= V'o D + ””o D".
In addition, we will denote by
1))

the mean value of any function f, which can be expanded in multiples of the
arguments w and w". Besides this, we will denote by T the monomial

M= (,):)“' ll!;l‘)’ (/)L’d" ¢;:ﬁ" — e’om’e:mn eV:T (7' w0’ +j! wir) .
In view of this, eqs.(3) are satisfied by the expressions

2d[(HO , -
= R = A W — 2 B 2

. 2d[(H") (1)

V==, = 4HE 0 — “11?»3'2'f'.'1”—2H'°'.

2 yHl'n:"m"
v =— 3 2y, m
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o 2¢ If}x’}v’:" !
4 ;v ’;'o'_’{_‘ jri l;”o m, (5)
(7'1 ,‘ ju)

'/"o l/"l =

2[’" l m: m'!
vt =3 2

7 vs + 7",

i |mr m
220 H fm

r” I’=_=
Po¥s 7', +7 v,

The integration constants have been equated to zero, which is permissible with-
out interfering with the gererality.

The functlons (5) a*'e even polynomials and of the fourth degree with re-
spect to e, oo , ¥y , o, ¥ The two first as well as the two last functions
are permuted on permuting qb and ¥o as well as @ and ¥J.

By mutually equating the coefficients of u® in the expansions of the two
members of egs.(L1) of Section 19, we will then obtain

—D (Yo ) — s Wo gy = Y, 4
D (g, V) — ¥ @'y Vo = 9o B,

—D (Y ") — Vgl =Y A",
D(p's W' — 7" W= B"s.

(6)

The second members are known polynomials which are even and of the sixth degree
with respect to ey, @5, ¥, @, ¥&'. The functlons VoAs and ¢h B, as well as
WAY and 'BY are permuted on permuting @ and ¥ as well as @ and ¥'. Conse-
quently, we can cause the constant terms of egs.(f) to vanish by posing

o[V A [ B,

e = Y's 9y N ( )
7
" [[‘l'" A" ]] H‘/’ ?":]]
Vo= — l,lJ" ‘P" rp" P

Then, these equations, after quadrature, will yield the expressions for the [_ﬂ.t
functions

wl° ",12 ) 'rl“ ‘;"3 . ¢,"' ',)”3') ’/)"o w"’ . (8)

The quantities (7) are polynomials of the second degree in eo R po s and p"3 The
functions (8) are even polynomials and of the sixth degree with respect to e,
W, Yos 9g's Voo The first two functions as well as the two last functions are
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permuted on permuting @b and ¥ as well as @! and ¥¢'.

Evidently, we can continue in thi: marner as far as desired, and succss-~
sively determine the terms of the exparsions (2).

It is easy to demonstrate that the quantities
Vi and 7y (9)
are polynomials of the degree k n e§, po°, and pd® and that the functions
P Vi T ¥ (10)
are odd polynomials of the degree 2k + 1 with respect to e, @, ¥, @', V.
This theorem is proved in almost the same manner as theorem 1 of Section 5.
Consequently, it seems unnecessary to discuss this further.
After integration of egs.(41) of Section 19, it is easy to write the
general solution of the canonical system (33) of Section 17, which is equivalent

to these.

For this purpose, we introduce in the expansions (2)
£=Vugs &'=Vig, =Vye, (11)

At the same time, we write there

1 T P T
g = 2 ARKD Vol wefro)

i
(k=1,2,3,...)

k+‘ [\ 2k+1) 10w 4 w0
" “fk“‘..iB}‘l" eV =1 w+j"w)
I

In view of the transformations (12) and (30) of Section !9, the wanted 115
solution takes the form ‘

o0
. N Al k+D ) .
St=§+¢ cosw + 3 X Af5" cos (f'w + "),
k=1j', 4"

' ' N (S5 2 ISR A I T (12)
1* = ¢ sin w +2‘ EAT,,-H sin (j'w' + J""), .
k-lj'.,'" '

<0
§1=" cosw' + 3 X B cos (fu' + " w"),
k-l Jl'}"

y = ¢'sinw" + 2 2 BEXEYY sin (7' w' + 7" w").
PSYRG
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The quantity €3¢, given by eq.(10) in Section 19, can be expanded in
powers of u and e ° (the coefficients of the expansion are rational in /h).

. The ouantltles A}zdfl) and B(zﬁnl) are of the order 2k + 1, congidering

e ,e", ¢, and /i as quantities of‘ the first order of magmtude. These quant:-
ties, in addltlon, are odd polynomials of the degree 2k ]L with respect to ¢ ,
€", and €' . These folyﬂomlals contaln the factor e'l<l enly” + 3" 18 odd
and the factor e ¢'¥l "l 1f j + 3" is even. The other factor is a poly-

. < 1] <
nomial in &' %, e" , and €'

We still have

+L0 =

A(2k+1) 0 BO, ’i"l' ) = O (k == 1, 2; 39 . -)o

(since the functions ¥o% and V¢! include a0 constant term).

In addition, the coefficients

P

Af§HY (k=1,%3,...)
are canceled out if € = &¢" = O Tsince the special solution obtained in this
case coincides with the particular solution (7) of Section 19].

Finally, the arguments w and w" have the form

w=vt+y, W=+

. In the expansions (2) of V' and V", the quantities uww and W' are of the /76
order of magnitude 2k. In addlplon, these quantltles are polynomials of the
degree k with resvect to €'?, e"z, and €'

We will next investigate the secular inequalities of the longitude.
The function G wnich appears in the second member of eq.(L4) of Section 9,

is dc‘lned by the formulas (uz) and (43) of Sectidn 19. We will there replace
o, ¥, ¢", ¥" by their expansions (2). This will yield

0
G = 2" wm Gm) — 2 1 g, (13) -
me=0 i=0 ‘

In view of the fact that the polynomial G'*) is even and of the degi-e 2mn + 2
with respect to &, o' , ¥ , o". ¥" and that the po;ynoma.ls (10) are odd and of

the degree 2k + 1 with respect to e, %, Vo, &', ¥, 1(t is easy to demonstrate
(by making use of the method given in Section 5) that g is an even polynomial
of the degre= 2i + 2 with respect to €, 4, Vo, @, ¥3.

We have, specifically,
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g Go" + G trla + ¢ha) + GUE A W+ GRST " W (1)

By ar{ran;zlr.g it according to multiples of the arguments w and w", the
function g ') "can be given the form of

g% = X g, VT (=0,1,2,..).

(15)

i

The quantities gg. jv are even rolynomials of the degree 2i + 2 with respect to
5 , oY, and & .

Thus, eq.(LL) of Section 1§ will yield, after integration,

) !+l g(l)

y ._"!4_0_“ 20" Sﬂ( NI
i dd 5T 0 G'w' +7"w").
Py + (16)

Here, ¢ is an arbitrary constant; n is the constant term of the second member
of eq.(Ls) of Section 19. In the sum of the expression (16), the integers i
and j" are not simuitaneously zero.

The quantity (j'V' + j"™")° ! can be expanded ir powers of i because of /77
the expansions (2) of V' and v". By putting

(7': v+ in Vy')y-l= 00 4 u J0 + !‘! a2 4. (17)

1t, becores obvious that 6¢*? is a polynomial of the degree s with respect to
po ) p(')", and eg-
Making use of this expansion, we introduce the following expression in
(
eq. \16):

a‘ ul'f-lg(l') @
_2« ; Y 7"v” gdlc: Nk
We have here used the notation

2k !
C(llil_“!‘k 21’5(.)9}5}-”:—1), (k=1,2,3,...). (18)

-

The solution of eq.(LL) of Section 19 will thus tecome

yi=ntto+ 3 X 08N sin (7w + .. (29)

k=1 ji,
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The quantities C,- ,.? are of the order of ragnitude 2k, considering &' , €",
¢, and /i as being of the first ordr”* of rragnltude. T)"ese are even polynomials
of the deszree 2k with respect to e , €%, and € . These p ro 'norria]s contain the
factor €Vlen ¥l provided 3 + i" %s even and ihe factor e €| ent@ gp L g
is odd. The other facter is a rolynomial in € 2, €", and €' 2.

The mean absolute motion n can be expanded in the fo:m of

n=n® + nl? 4 g9+ n® F... (26)

The ouantity n'?*) (k = 2, 3, ...) which has the expression

RiER == — of* [[g% 1], *k=23...)

is of the order of magnitude 2k. This is a volynomia: of the degiee k - 1 78

- t2 " . v2 ca s (2) 4 ~= = N
with respect to ¢ “, €', and e “; the quantities n“' , nn"’', ... all containu
as factor. We have, srecifically,

2380
dz*

1

n% = z3~3, @ = _

= — (g9 = — 1* (Go0” + GRT % + GhE7 o)

~30,0,0 ~1,0, -~
_"!d 560 . !lé d \.l v 2'_0 " E”’d L‘.l‘) 8,0,_2
: dan ~ T HEY (21)

.
zl

— ue _ 81,0 0 o
: . < ~1,0,%0
l dz‘ dIl 60,07,

1,2,0,0 \ ~
'gld" Q, do:uo 1110

~1,0,2,0

+ 48 _(,_‘r_};af'f’! )
)

In this Section, we have assumed that the divisors (1) are not small. Let
ns see what happens if one of these divisors, for example, rvj + (r + s)ul be-
comes smeli. For aboreviation, we will put

r'y+{r+8)vy=u0. (22)

In view of the method used in form‘mg the coefflclents of the eypansmns (2)
and (13) it is easy to show that the functions @ , Yo, A", W, and g contain
the factor

ok,

and that the quantities w and v contain

o~ k+l
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and, finally, that the coefficient of the expansion (17) contains

g—k—1,

It results from this also that certain of the coefficients AS. :,‘.”’ nd Bf,-af.f‘) /7S
in the series (i2) are comparable in magnitude to

_“k"'; g- ¥
. . '
and that we have coefficients Cj°j¢ of the series (19) that are comparable to
1wk o=k

Thus, it is quite obvious thai the Pxpa")slo"ls of this Section are svill valid
if 21l the divisors {1) are of the order of /% or larger but that these expan-
sions are iliusory as socn as any of these divisors becore of the order of v
or smaller.

P+l

We will state that a characteristic rlanet of the tyre is "regular®

if the diwvasors (1) are sufficiently large so that the first terms of the
series (12) and (19) converge sufficiently rapidly but that such a planet is
"gingular" in the oprosite case.

For singular planets, the quantity A, defined by eq.(6) of Section 19 (by
putting there q = 1), approximately satlsf ies an equation

3o+ +9)Fh3 =0, (23)

whege r and s are two whcle numbers. In the expressions for the coefficients
ﬁ%ﬁ and géﬁ“z [see eq.{3) of Section 19 and the equations given on pv.l25and

126),we must introduce

1 » —
N +“1'V‘ld+“'}'

ac,z.(P; +r4) —(p+l { -33

Let 1“1 Ny oz , etc.,be the values of the coefficlents Fooh Fl'°'°" . ete.
pizela 900 ’ 0000 » ’

. S 5
calculated with the value x3 = (-—pf—l-\ . By neglecting v in eq.(23), we /80

can consider the equation

nos 3 :
“81’1‘),20,8+TJ (n'; ) (Fl—(;!.,y(-)l-llo)’+v“?_(.jj““)=or
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where &(2° ) is a certain polrnomial of the third degree in £° with numerical
coefficients. Still neglecting p, we will obtain

A=t dpps+ AoVt

where 3., and ﬁ%ns are certain numerical cocnstants that depend oniy on the
three whole numbers p, r, and s.

For singular planets we must have
Ad=3 dprot Jpe:Vie+ Cu, (2L)

where C is an arbitrary constant whose absolute value is not too great.

Evidently, the quantity A:n. has the following expression

3r (p+ 1 1(_1"_3:2_',;31_ o)

4 rprtne)
P U RS (25)
cr else, with the Gylden coefficienis vg”,
4; _ﬁr(z’_tn) [3(p+1)/h241 + 2/be 1)
pne= o by 37}0+ 47l0 (25')

In the computation of Y?j we must use the following value for the ratio of the
major axes:

The expression for A;n. obviously is more complicated.

Section 23.

In Sections 19 ~ 22, we gave the theory of the secular variations of char-
acteristic regular planets, by assuming that the eccentricities and the inclina-
tion are comparable in magnitude to /i or smaller. We encountered there singu-
lar planets in the cases in which g 2 3 and also in the case in which q = 1. 4§;
For q = 2, all planets whose eccentricity and inclination are of the order of .74
(or smaller) are regular.

In this Section 23, we will lnvesylgate the planets for which p1 or 02 (or
both) are comparable in magnitude to w#. For reasons of symmetry, it is con-
venient to conslder, at least formally, not ?nly Df and ps but also the eccen-
tricities ¢' as quantities of the order of uz.




We will start from eqs.(33) and (58) of Section 17 which, after introduc-
tion of the independent variable

t, =ut (l)
can be written as
dit__d F*—F; dig__ d F*—F7 (k=1,2) (2)
&, di o dt,  dii u ’
dly; —z37%) _ 4 F*—Fy
T T Tas w 7

Evidently, the equations of secular variations, in the theory of ordinary
planets, can be given a similar form [see egs.{1) and (2) of Section 3].

A considerable analogy exists between the expansions of the function

Ft

u

in the theory of ordinary planets ané in the theory of characteristic planets.
In fact, in the first expansion, the quantities

oo FRESE™
correspond to the quantities /82
VE, Jm o, my

¢ F1% ]
ina the second expansion.

In addition, the integers i, E, m, M, Ji, Jo in vhe two expansions satis-
fy the same conditions (11) of Section 3 and (29) of Section 17.

Finally, to the fundamental relation

Fo3a0+ Fagts=0

9,0,

in the theory of ordinary planets there corresponds, in the theory of charac-
teristic planets of the types

p+g
' (g>2),

the identical relation
f0%0 4 fo0z=0.
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Conversely, for characteristic planets of the type

p+1,
Y 4
we have

g7 + fygo2 0.

According to the above statements, complete correspondence must exist be-
tween the theory of secular variations of ordinary planets, for which the eccen-
tricities and the inclination are comparable to

Vu

and the theory of secular variations of characteristic planets (where q = 2),
for which the eccentricities and the inclination are of the order of

.

In Sections 3 - 6 of Part I, we expressed the following unknowns for the /83
ordinary planets:

&, Nk (k=12)
and

yy —
as functions of t; and of six integration constants
z;, €, &, 7, Yade
We now return to egs.(3) and (26) of Section 6. The expan31ons given in that

Section still depend in a known manner on the eccentricity e of the orbit of
Jupiter and also on the quantities

T T AR L F ()

d z*
The quantities e', e", and e are comparable in magnitude to /ii.

For obtaining the corresponding sclution of eqs.(2) and (3), i.e., the
secular variations of characteristic planets (assuming q 2 2), it is obviously
sufficient to replace everywhere, in the expansions (3) and (26) of Section 6,
the quantities (L) by

V!‘ ’ j;;,";,'m" ™

d i
o daliE T (5)

and to consider €' , €", and €' as_be of the order of u«. All that we have
gtated above on the coefficients §, Ayciw '’ § }Tl), Cr 3% of eqs.(3) and (26)

of Section 6 (cf. pp.36-38 and L4~ hs‘af Part I) remeins valid also for the cor-
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responding coefficients 1n the theory of the investigated characteristic planets
if we everywhere write /. instead of u.

In the expansions of the unknowns §1, ﬂl, and ;1 we have introduced a /8L
divisor which is denoted by 6. For "ordinary®" planets, the expression of ¢ can

be written as follows [see eq.(2) of Section 6 and egs.(i), (2j, (3), of Sec-
tion 7]:

So as to make the expansions (3) and (26) of Section 6 valid, we had to
assume that & is not too small but comparable in magnitude Lo k.

For characteristic planets (assuming that q = 2), the corresponding divisor
will have the expression

= 2(2f000 + 30T — 2 (200 + fL3A e
l l 1,0 Il 11,0
_2{/&3.2,0 + ﬁ,;g-“}l/ﬁ .
To have the resultant expansions be valid, it must be assumed that this quantity
is not too small but comparable to /.

In Section 18, we have expressed the coefficient; f_,""l'a by means of the
coefficients F, 1’,2'.2 of Section 16. By making use of these expressions, we can
distinguish two cases depending on whether q 2 3 or q =

Let us first assume that

g23.

Then the expression (6) for § becomes
g=—2{2 PO 88+ FERET &1 — 2(2 P00 + Fug oye™ ‘
20,2 F wofF
—2{FLs8o+ Fuioo— 4F5('.§"8F‘.’=3;g+w5 0.0,0 ?8;9}
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The coefficients of €' and €" are still negative, according to what we had
demonstrated in Section 7. Consequently, the divisor & truly will be of the
order of /& as long as € or €" (or both) are comparable in magnitude to w=,
Actually, the term in €' ? is relatively small since € , in reality, is compar-
able in mggitude to /i. In addition, it can be demonstrated that the coeffi-
cient of ¢ © is also always negative. Thus, the characteristic planets, for
vwhich we have q 2 3, are of the "ordinary" type if the eccentricity or the in-
clination (or both) are comparable in magnitude to w%.

Let us then assume that
qg==2.

The expression (6) then becomes (neglecting the term in e'® which, in reality,
is relatively smail)

1,0, 4, ,0,2,2 12
6 = {4 FO,O,U,:)' + 2F(1,'8.¢:;'; + L_’S—x;i (Fl‘,‘;’;:%l%z-o)’} 5"

B
A3zt

—{4F6:8:3:3+2F3:8;3;3+ 12 F’_';’;,‘;,igo,;)’}e"' 7)

16, 102 , _
* pd {F gt 00 + (FL3 5300200 Vic +---.

The coefficients og this e%cpress‘ on are comparable in magnitude to unity. The
coefficients of € % and €"° are always negative; the coefficient of /i has the
same sign as the quantity A defined by eq.{6) of Section 19.

We state that a characteristic planet of the type L;—?' is Mregular® if

the quantity ¢ of eq.(7) is of the order of /k; we state that the planet is
"gingular! if this divisor § is of the order of u™ or smaller.

In view of this, we can conclude that the characteristic planets of the

type -L—%——g— are regular if A is negative; for the singular planets, the quanti-

i
ty O is necessarily positive so tnat €' or €" must be of the order of u*.

These singular planets have a mean absolute motion greater than _p_%__@__

We would like to make a brief remark on the secular variations of charac-
teristic planets of the type :
ptl
b4

while cons}dering the eccentricities and the inclination as quantities of the
order of w4,
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We will no longer start frcm the expansion

h( —F3)= 2 8;:,"‘ T i1 glm (’*”" e3™ cos (j, wf + j,©F)

(as had been done in Section 19) but from the analogous expansion

o (F*— FY) = 3 i m Vit 7 gimi g2 o0s (G o + j, o)

[see egs.(l) and (28) in Section 17].

In Sections 19 and 22, we expressed the unknowns

Sk, ok (k=1,2), &)
and

* ‘

v (9)
as functions of t; and of six integration cornstants

z:, &, ¢, 7, Yade
[see eqs.(12), (19), (20), and (21} of Section 22]. The szeries found there /87

inciude also, in a known manner, the eccentricity e' as well as the quantities

- d .
i 0;1";: my, m:’ ax. ’,;,,r;; » T, (10)
1

The quantities €', €", and € are comparable in magnitude to /ii.

To obtain the corresponding solution in,the case in which the eccentrici-
ties and the inclination are comparable to u%, it is sufficient to replace, in
the mentioned expressions of the unknowns (8) and (9), the quantities (10) by
the corresponding quantities

. d .-
Vu, [l o iz [, 150 i 2 (11)

Jun

- and to consider, finally, the quantities 6 , €", and € as being of the order
of u4,

i

The ratio of the consecutive terms in the resultant series is of the order.
of u<, provided that none of the divisors

i, + "o, (12)
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becomes too small.
Let us now suppose that one of these divisors, for example,

1,0,
)

.0,2, 6r o010
rofy + (r +8) 'y =28Fq "2"3"4=};;"‘ (FZy p41,,0)" =0 (13)

is small. The expansions of the unknowns (8) and (9) proceed in reality accord~
ing to whol powers of the ratic

Ve :o.
We can ccnelude from this that the considered expansions certainly become i)lu-
gory if one of the divisors (12), for example o, is of the order of /i or
smaller.
As in Section 22, we state here that a characteristic planet of the type

—P—;—l— is “regular" if the divisors (12) are sufficiently large so that the /88

first terms of the mentioned exmpansions converge sufficiently rapidly but that
such a planet is Msingular®™ in the opposite case.

For singular planets, the quantity A defined by eq.{6) of Seci.on 19, dif-
fers only by a quantity of the order of /i having a value of

i JP,Y, y
where the quantity As,, is also defined by egs.(25) or (25') of Section 22.

In Sections 20 - 23, we integrated the equations of the secular variations
for characteristic and regular minor planets. It is now easy to find, for these
planets, the definite form of the canonical variables x, y1, 8 , Tk defined in
Section 2.

In fact, we have first shown that the differences

z, — 1z, yl"‘—!}n gk_gk, Nk — Tk

can be expanded in the form of eq.(16) of Section 16. Then, we have shown that
the difierences

. . > » .
Tn—x3, $i—y5 Se—&, pe—yk

can be expanded in the form of 2q.(40) of Section 17. Here, the quantity x{' is.
an arbitrary constant. Finally, we have expressed ‘ :

yr—(nt+e), S, nk
as trigonometric functions of the two linear arguments of w and w". It follows

from this that the unknowns
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%, wi—nt+e), & m ggég
I
can be expanded in trigonometric series in multiples of the four linear ergu-
ments with respect to time: !

ntte, t, w=pvt+y, w=pst+y"

the theory of singular characteristic minor planets. It is necessary to state
only that this problem can be reduced to one degree of freedom and that the
'principles of Part II of this research are applicable, with certain modifica-

i

{

]

. . . . . . s

We do not believe it necessary to give here such a detailed discussion of |
|

i

f

tions. ?

'
1
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%the only one in the vicinity of the commensurability -h— and (153) Hilda with

RESEARCH ON THE MOTION OF MINOR PLANET3 ##/1

Part IV i

Hev.Zeipe™ #

|

The term “eritical of the type (p + q):p" will be used here to denote minor
planets for which the mean motion differs from the rational number (p + q):p by,
a quantity whlch i. comparable in magnitude to the mass w of Jupiter or =maller,
From the viewpoint of practical calculation of the perturbatlons, the !
theory of critical planets offers relatlvely little interest since such plane- |
toids, actually, oczur quite rarely in nature. It is well known from statistics
that the large gaps in the distribution of the asteroids are located exactly at
the spots where the period oi revolution with respect to that of Jupiter would !

approach the numbers ?,?,g,; « In this vicinity, it seems that no planets ati
A

ﬁll are present. The most remarkable critical plinets are (279) Thule which 13

several companions near the commensurability -%—. However, the largest number 43

t

of critical planets correspond to the ratios ;,;,2,{;,..., in which the nuferT

ator differs from the denominator oy a number which is larger than L.

i How can these gaps be explained? Can a planet, placed into these lacunae,
m.intain itself there? Can the critical planets be transformed into comets be-
‘czuse of the presence of perturbations? Only a rigorous theory could furnish ai
complete answer to these interesting questions. However, for a rigorous theory,
fthe presently available analytical mehhods scem insufficient. 1

i
!
|

For the time being, one must be satisfied with a formal theory.

| In what follows, we will make an attempt to base a formal theory of the
icritical planets on trigonometric and semiconvergent series, such ¢. we have
lused previously for the theory of ordinary or characteristic planets. In this
Part IV, we will limit the discussion te critical planets of the types (p +

+ q):p, by assuming that

¢>3.

#* Received 6 June 1917. .

4 Yol,13, No.3.
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Among these planets, the following two types must be differentiated:
"singly critical™ pla-ets, for which the slovly varying portion of the major
axis is no¢ close to certain values dependent on p and q and on two other inte-
gers ¥ and 3; "doubly critical"™ planets, for which the secula: portion of the
rajor axis approaches such a value.

In the case of singly critical planets, only a single small divisor exists,
The probiem is thus reduced tc a canonical system with only one degree of free-
dom. Therefore, a formal integration is entirely possible. We have found that
the rajor axis, the eccentricity, and the inclination remain more or less in-
variant. Thus, the motion of singly critical planets is stable from the view-
point of formal calculus. It is possible that a libration exists between the
Jongitude af the node and the longitude of the eccentric vecter, as is the case
for ordinary planets and for characteristic planets. However, the mean longi-
tudes nevar take part in a libration.

The problem or doubly critical planets is characterized by two small i- 13
visors. Consequently, this problem is reduced tc two degrees of freedom; a
formal integration is not possible in complete generality. However, an inte-
gration can be performed undzr certain conditions which, themselves, are rather
generai. In the resultant solution, the major axis, the eccentricity, and the
inclination remeir more or less invariant such that formal stability is guaran-
teed. Occasionally, there is a libration between the longitude of the node and
the longitude cf the eccentric vector. A iibration may also exist between these
longitudes and the two mean longitudes or only between the two mean icngitudes.
Finally, it may happen that two librations take place cimultanecusly.

To investigate the formal stability of the doubly critical planets, it is
not necessary that a formal integration be possible. By means of the first
Jacobi integral, we will demonstrate that the motion of doubly critical planets
is stable from the viewpoint of formal calculus, provided that

g>5.

It seems that we can thus expla.n why there are no gaps in the asteroid belt,
for q 2 5.

Frequently, the motion is stable also for q = 3 or L. However, for these
values of q it has never been possible to establish stability for all values of
the integration parameters. On the other hand, it 1as never been possible to
demonstrate the existence of instability. Nevertheless, it is of interest that
the ring of minor planets always shows gaps wherever the narcber q is equal to 3
or L.

Section 24.

To study the motion of critical minor plarets, it is convenient to start
from the camonical system (22) of Section 16, which is written as follows:

17




di, dF dy ___dF
dt  dy ' dt dz,

. (1)
3 2 ’ 2
di _dF dy  dF (k=1,2).
dt  dip  dt dE,
The characteristic function can be expanded in the form of yin
F=F,+uF, + F, + ---.
Here, we have specifically
- 1 p+q.
Fo=.-y +5—22,. (2)
° 22: p 1
In additior, by putting
;‘Tk == ¢ COS (9, IKt= Qg BIN wy, *=1,2),
the expansions of F; are written as
Fi= 2 I"i'}’:;;’:‘(‘i"i'n:ll-ix.ﬁe!; 0,™ ;™ €08 (¢ Py + §, @, + 1503) - (3)
The coefficients Sﬁﬁﬁﬂzhhﬁ are certain functions of X, defined already

in Section 16. In the sum (3), the exponents m, m , m and the indices ¢, j,
jo all take integral values that satisfy the conditions

- 1<<m,t 15,1 <<my= even, .
leg +j, + 5| <<m + 252, (&)
from which it foliows that
| lrgl<<m+m, +m, +2i—2. (5)

Irn the theory of critical minor planets, a differentiation must be rade be-
tween the various types characterized bty the value of the whole number q.

ot

This Part IV of our research will be dewvoted tc the types 1a which

g23.

———

# By the notation a << b, we mean that b - a is an even noanegative integer.
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In accordance with eqs.(3), (4), and (5) we wiil then have, up to terms [
of the second degree inc>., with respect to the quantities py, 03, e , and /i,

3 1,0,0,0 1,0,2,0 - 2
F,=Fgoo0+ Foooe0] + H
"1 . "
+ 2F5 1 0¢e0, cos o, + FhEboer + ...

W, < uFgdss+ -

In the types in which q 2 3, it is easy to reduce the system (1) to the
normal form discussed in Section 1. It is sufficient to introduce new variables

o, o
z:§»§s Y. 4, 7

by putting

I, =1z, + uz, y=9,

f. =ce + V." §': iil =rn "7"

) . 6
£ =Vud", y=Vuy' (6)

Here, the numerical constants x3 and ¢ have the following expressions:

7 = (-’J’_—)"".

(7)

c==-F(1;'n’lo(xx) Fy, .&8(51)'

We will here consider the eccentricity € of the orbit of Jupiter as being
of the order of /i and thus set

e =Vie,. (8)

The characteristic function F, expressed by the new variables and exparded
in powers of /8, can then be ziven the following form:

1 +
F=2'x?+p7)q ) e “FOOOU(zx) + “’H (9)
The functicn H, defined in this manner, is given by an expansion 16
He=HO 4 (2 HOD 4 IO 4 P HOW 4 ... (10)

By putting, in addition,
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tl = f"r

the new variables will satisfy the canonical system

dz _dH  dy dH

dt, ~ dy’ dt, —  dz’
ag _dH dyy dH
dt, “dy’  dy, T dE’ (11)
(!"" dH dy"  dH
dt, dy’’  dt. T T ds

It is easr to write the expression for H o), Making use of the notations

3 dF5090!%,)
Bz) = > 2 4 CF0000 ), o oonst.,
(=) 21:2 + daz, z + cons (12)
¥ =—2F5350x), ¥ =—2F585(),
we actuwally odbtain
"H
HO = he)— 7 (5% + 1) =) G +4), (13)

Thus, the system (11) actually has the normal form already treated in Sec-
tion 1.
The numerical quantities V' arc V" satisfy the relation
¥+ 9" =0.

'We will give the general expression of the functions K™ that appear in
the expansion (10). For this purpose, we will set,

a

S' J— e' cos (u', 1}' = 9’ sin (0’,

g” — Q" cos (0"' 1)" — Q" Sin (""’ (M)
and consider the sum

X T
/ (] \ F :‘pm—':‘(‘ﬂ':ﬂ).}'hj” (zl)

(15)

? e"‘e""‘e”""’ cos (1 py + f0' +§'w"),

wherc the indices i, s, m, m, m", Ly J1, " run through all integral values
that satisfy the conditions
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t>1, >0, m>0, m, >0, m">0,
. 1, _
z+s+2(m+m,+m")——2=-m,

i <<m,, ]7"1<<m" = even, (16)

lg+i+7'l<<m+2i—2.

B',r virtue cf egs.{l4), the qua.ntlty £(*? will be a certain function £'*’ (§', ¢ ',
, ") of the variables £', ", ' , T". :

Since the substitution (6) as well a. eq.(9) are given, it is obvious tha.t
we will have, in the expansion (10), ,

== 0 " F3her g 0 Ge, + 8L o, o),
(k=0)l)21'-‘) (
17)
H* Y = 042 e, + 21, 2, o). |

If we wish to substitute ce, + €' for &' in the function f'®’ &, e, n, '

'ﬂ"), it is first necessary to form the successive derivatives of the function

75 = g™ cos (j,w' + a)

wlth respect to € . (Here, we denoted by a an arbitrary quantity independent

of p' and w'.)

First, we have the differential formulas /8
4 L d
ig = €Os (v d§7 8in ' ay L)
d .. d . d
da s w d‘g, + cosw d_q_i'

from which the invex;se formula

D=

4—-cosu d sin o'

dg o8 g T sind s

;is obtained. ‘
By applying successively this fcrmula and by putting, for abbreviation,

m + g, Ig‘=_'.::.‘7..l,

a, == ) :
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it is easily found that

Dyl — i + Bt
D™ = o (o, — 1) gims? + 20, g gm0 + 8, (3 — Dz,

DA™ — i, (o0, — D (e, — 245057 + By (o, — 1) By gy

+3a, 4 (8 — DOt + 3,3, — V(B — 2.

The general law here is manifest. We can set

dm-m" g'm cos (4, ' + a) s\ ot

T Tt Slimy—t JJ
(my—m) 1 5™ i

cos (j o' + a).

In this sum, the integer j' takes all values for which
F—htm—m=0,24,...20m—m).

It is easy +to demonstrate that

. ! LA
. Gy "( )(ﬁ') —a)' (B —p)is!
with the notations
! o o
av=z'_=_;_}_, g1

Now, we can write eqs.(17) in the form of

H(ﬁ)_..L _l_)-k + 3 k+2

2 xkﬂ
: Hz’m"’"n" Q'W g"m" cos (‘P!'I + ij' + j"w"),

H(H.}) __ s\ HH-! m', m" e:,,.v enmu cos (cpy + j'e + F"a").

LY A%

In view of this, egs.(15), (17), (18), and (20) show that

mm’ m__ %, m, my, m!t a) (B - e b my—my &
,’J' .Ju Z Fcp, —l(lp+q‘ I (1'1 . (a,l) (p"l) cm—m' ecm+mn m' a_! .

i, 8 m,a1 ,9.
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B

I3

5,

Here, we used the notations
m, =a, + gy, fi=t,— By
m =a _*.‘,Il' )"=(l' ____,31’
m" —_ a" + #”. 7'" j— C" _#ﬂ.

Finally, in accordance with the relations {16} and (19),
o, , By take all values that satisfy the c.nditions

i>1, >0, m>0, a>d, 3,>3

fig+a,—3+d"—3"<<m+2i—2

=2m+ 2—(a + 8, +d" +3")—2s.

We will demonstrate that the indices m , m", ¢, § ,
polynomials (23) satisfy the conditions

Ij,|_<_<m"1 lj"|5_<_m"~.=even,

Jigl<<2m +2—28<<2m + 2.

the indices i, s, m,

(24)

j" that appear in the
0

|

i

!

lg+7 +i"l+m' + m"<<2m +2—~25<<2m + 2, (22]
i

1

The two first of these relations are eviden*  he others are true since, on the '

one hand,

ftg+d—g +d"—3'|

|
i
|
i

=|lq +a,— 3 +“”_lg"_(a1_a') + (ﬁl_ﬁ'):

<<om+2—(d + 4 +a'+8")—2s,

hnd, on the other hand,

' I’Q|=I"Q+al_ﬂl+“"'—ﬁ”—(an_{?i)_(a"’—ﬁ")l x
? <<hig+ o — i+ =@+ Loy — B+ o — 8] |

<Llgta—fi+a" ="+ + 5+ +

3 Below, we wiil give all values of the indices m' , m"
the conditions

% 7' << m, 17"} £ < m" == even,

i

<<2m + 2—2s.

, §, 3" that satisfy

! !
as well as the relation appearing at the head of each of the following Tables. |
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Table

Table

Table

Table

L 7 +5'+m'+m"=0.

[ " K] /]

mom
6 o0 o0 o

2. i+ +m 4 m =,
m’ m" 7‘( 7'"
2 0 0 0
1 0 +1 0
0 2 0 0

3 7+ m =4,
m m' y 7"

O O© M = 1O NN W
NN NS O Q
H..

(3]

..H

4 |7 +7"1+m+m"=6.
7'1
0

+1

+ 2

+3
0

+£2 F2
+3 F2
+1 F2
+1 ¢

+2 0
0 +2

+1 +2
0 0

+2 F2

+1 0

*1 F2
0 +2
0 0

i

a:

-y

S o Qo

© O = DD~ NN WWW A AW RO 3
Q**?hhMNMMMN)MNOOOO
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3+ +7"}+m +m'=3.

6
m

Table

|3+jl+,-ul+ml+mn=5.

6:

Table

0
1
3
—1
2

[}

—1

447 +7"1+m +m'=4

7:

Table

—3

0

«~
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14+7 +71 +m' + m" =8.

8:

Table

+1

-2 -2

—3

2
2

-2 —2

4

[6+7 47"+ m' +m'=5.

9:

Table

m"

*0

m'

—5

(=N

o ™

(=2}

o~
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i

Table 10: |6 +j + '] + m' + m" = 6.

!

m m” 7‘1 7' y
6 0 —8 0 %
5 0 —5 0 i
4 0 —¢ 0 i
3 0 -3 0 |
2 0 —2 o §
1 0 —1 o ?
0- 0 0 o0 :
4 2 —4¢ —2 ;
3 2 —3 —o2 !
2 2 —2 —2 ;
1 2 —1 —o2 f
0 2 o —2 |
2 4 —2 —4
’ 1 4 —1 —4 !
0 4 0 —4 f
0 6 0 —&6 |
|
Section 25, [;i

! 1
: To further reduce the canonical system (11) of Section 2, we will apply
th. method given in Sectijon 1. |

; The integratioan divisors, resulting from this method, obviously are given !
by the formula 3

t
, epr(2) + (G =7V, :
where we have put |

| ) )
|
|
|

If ¢ =0and I = j", the corresponding divisors will cancel out.

L Let, now, @ be an arbitrary positive whole number and let § be an arbi‘orariy
integer having no factor in common with «. Let us denote by

| Za,p
?the root of the equation linear in z

apr(z) + 8 =0,

'
t

Since the expressions of h(z) and ¥ are given [see egs.(12) of Section 2], the
181, '
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numerical value of Eqs can be calculated by means of the formula

Ny
8
w
2
B3N
——
Q.
P
[=X=4
(=31=]
[ =X=]
—
]!
=
~
B

AN S (2)

i

It is necessary to differentiate between singly critical planets for whiché
the initial value of z is not close %o a value Zgg and doubly critical planets
of the case (@, B) for which the initial value of z - Zg is sufficiently small.

1
In this Section, we will roughly sketch the theory of singly eritiecal

planets. In this case, we have only a single small divisor, namel;y, the one !
that corresponds to ¢ = 0 and j = j". Making use of the method given in Sec- ’
tion 1, the considered canonical system can be reduced to enother s;istem with |
one degree of freedom.

To effest this reduction, we must start from tne characteristic 16
i
H(z, gl’ §n; g’ ,]1' ,]u) ;
as well as from the unknowm function
H* (Z, §I’ §H; '21' qu)

and then use these for forming the equation of partial derivatives

dS d*_g dS. o ot n)_ ( &g, ds J8 .
H (—i-;»a",;,ta‘v’ﬁz v _'H* Z Sy s ,a;fﬂ;i\iﬁ)

ﬁ‘he functions H, Hy, and S are expanded in the form of

H=HO 4 5 4 g HO 4 Q:HOD 4 AHO 4 ...,

Hy == H® + nHY 4 1 HY + .-, (t‘d
8= 8O 4 S0 SW g S 4 28y .. i

|
i

These series must be intros%wed into eq.(3), after which the expansions of the
ftwo memb.rs in powers of L'° must be compared. ,

I By putting
: b , V! "
HO = HO = h(z) = 3 (8 + o) = (€™ + 1,

SO =zy + &'y + gy, 8-—=80+8,,

leq.(3) will be satisriiea for u = O,

)
i
i
|

After this, eq.(3) can be writtin in the following forn:
185
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H(z+ .‘ =‘+‘—fi—§;’. £+ :S,., v, 7, ,)

s (6)

—Hy[e 8,8 = G 4 55)

By here comparing the coefficients of u”e in the expansions of the two members,

we obiain the equation 37

dS“" ?u —r dS": b H — Z" . dSit i

- 1’(2) Ty '; dgl

{The sign % in front of a given term desi, ~ates a sum of the two terms, of

which the second is obtained from the term ~sritten by priming tne letters tw1ce
inatead of only once.) It is convenient to introduce the variables o', p", o',
and #" defined by egs.(1l4) of Section 24. To abbreviate the notations, we will
also make use of the symbolic notation ;

D= 3L+ 7 Hov v 2. )

In view of this, the equation which yields 5tya? is written simply

DSud = HUWD, (8)

In the function d“la) the index m has the value 1. The last of the rela-
tions in the system (25) of Section 2l vhen demcastrates that

legl<<3.
Consequentiy, we will have
Hts = 0, ;fq_>_4'
and, in accoyrdance with the second formula of the system /22) of Section 24,
Hei =g 3 HP™ om o' cos {py + jo' + j"w") ©)
ifg=3.

For q = 3, the above sum includes gix terms that correspond to the six combina-
tions giver in Table 5 cf Section 24. ‘

It sho.:d finally be mentio.ied tict the function H*) does not depend on -
“# = ~iable z. This resuits from the last of the relations in the system (25)
o¥ Sec.ion 24, which actually shows that the exponent: s assumes exclusively the
value zero in the expression of the coefficients H{‘},,u given hy eq.(23) of

Saction 2.
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Now, eq.(8) yields /18

St =0, ifg>4, (10)
and

H m m' Tont Moyt
03 e 0 V4 13t en s N S
802 L i) + () SRPIH T T,
ifg—=3. (11)

A comparison of “he coefficients of 4 in the two members of eq.(6) will
yield the equation

DS® = Fm — H®), (12)
where
7 wd H'2dSC 3 idStise
) — H) N\ 3
H H }_, 3T dr +2;’:; 5 )
¥ [d S"u’ d,gom 13)
+ 3w ) |

Now, let f be an arbitrary function periodic with respect to pif, w , and @"
with the perlod 2 and expandable in a trigonometric series in arguments of the
formtpy + ' + j"". In this Section, we will denote by

i

the ensemble of the terms of f where

In view of this, it is sufficient to put, in eq.(12),
Hg»=[1;m]
so as to finally obtain the function s‘*) without small divisors.

Evidently, we can continue in this manner and successively determine the
various terms of the expansions (4).

It is easy to demonstrate that, in all the arguments /19
‘Pi/ +’w +]u "

which appear in the trigonometric and finite expansions of the functions

Hm| Ho and Stm),
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the numter *q is always of the same parity as 2m, exactly as had been the case
for the various arguments of the function H'*®

Because of this, we have always been able to put
H9 < H9 < HEY = ... — 0,

From this it also follows that

H? = HG) = HC = ... =0, l
1 f q is even,
S8 ez SO = §PD) = ... =0, I

We will examine the function H(*l) in mere detail.
If

924,

we will have St —0, HW—_Hw,

To obtain the expression for H“) s 1t i3 s "flclent to retain, in K , all
terms in the arguments of whlch we have ¢ = 0, j = j". In accordance with

* . Tables 1, 2, and 3 of Section 24, this will yield the following expression:

11(1, =H117 4,0 u + H(’) g,gev en, + HY &39,,‘

+ Hig 0o + Hy ase™+ HEeY (1)

Then the function Hf,,. ) is a polynomial of the second degree with respect to p'?
and p™; this polynomial does not depend on the angle «' + w".

Let us now see what will happen if /20
q-=3.

In all arguments of the various terms of the functivas (9) and (11) and of their
derivatives, we will then have

—3<j +5<0.

This is demonstrated by the six combinations ir Table 5 of Section 2,. Conse-
quentliy, ,ﬁ{x the arguments independent of y in the trigonomet,rlc expansion of the
function defined by eq.(13), the indices j' and j" satisfy the con-:
dition

I +5"l<3.
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Thus, in the arguments of the function Hﬁq‘” - [H*) ] where ¢ = 0 and Jo= "=
= even, we will have

125"1<3,
whence

3
0
[—~]

In addition, we have seen above that the funct?n [H(”] is indepeixient -of o'

and w". Consequently, if q = 3, the function » - will also be a polynomial

in o'® and p™. However, this polynomial is ncw obviously of the third degree.
We wili also investigate.the function Hf_,f) .

So as not to compiicate the discussion excessively, we will investigate in
detail only the tyres in which

qg> 4.

Then, the equation which yields H(:) and 5'® can be written as follows:

DS® —= [ g®,

where we have made use of the notation

/21
- dHMESD  udHWASH 3 dsiye
@ =H @ o T8 L W0 Ty 2 (e
n Faz ey & ar tan dy)
3 (A8 (S gdtipase (15)
tay d_S') d,,') Pl M TN

The sought expression for H(_:) will then be
HP =[Hm),

The terms of the function [ 3] correspond to those of the combinations
given in Tables 1 - 4 of Section 2,, where i = 3i". 1In all these combinations,
we have j = j" = O. Thus, the function [H'?’] is a polynomial in o0'2 and o™,
independent of ¢' + w". The polynomial in question, obviously, is of the third
degree with respect to p'? and p"°.

1)
In the terms of the derivative ar vt we will have, as in the part of

#1) that depends on z,
l‘?lS_S%'

from which it follows that ¢ = 0. This derivative thus is independent of y.

ds(l)

3y depend on y. Conse-

On the other hand, all arguments of the function
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auentiy, we will have

dHW dS»
)

To go further, we assume first that

g>5.

We state that the functions K and 5'*? are then independent of y since we
have there {L 1 << I from which it follows that ¢ = 0. All terms of the fune-
tions K1, Hig) ~and 5?7 then correspond to the combinations of the indices .
m , m", 3, i" entered in Tables 1 - 3 of Section 2,. In the derivatives of
these functions with respect to &', T , &", T", we will have

|7!+j11|52.

The quantity fj' + I = 2 can occur only in the derivatives of terms that /22
correspond to the combinations given on lines 21, 6, and 7 ?f Table 3. By re-
taining only the terms of tne derivatives of H'*’ and of S'*’ where !j + j"| =
= 2, it is easy Lo find that the terms of the function H(*a) , where we would have
13 '+ 37| = &, will cancel out. :

Thus, above q 2 5, the function Hf:) is a polynomial in p'* and p™ which,
incidentally, is of the third degree. .

We will assume that
qg= 4)

then H'’ and S'*’ will also contain terms that depend on jy. To obtain, in
(f2)], terms that depend on the argument 20’ + 2w", it is sufficient - in ac-
cordance with the above statements - to retain, in #1) and s'? s only the
terms in which

¢=1 H+7+7+m +m" =4,

These terms correspond to the combinations given in Table17 of Section 24. 1In
‘the corresponding terms of the derivatives of K and s » with respect to
any one of the variables &', T, §", T", we will have

t=1, —38<j'+j"<o0.
In the squares and the two-to-two products of these derivatives, we will thus '
‘have |3 + j"| < 3 for each argument in which ¢ = O and, consequently, j' = j" #
'= 0 in any argument in which z = 0 and § = j* = even. !

ment 2¢' + 20", all are contained in the function !
. i

Thus, we see that the terms of the function H(*a) , which depend on the argut
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sl ]

To obtain these terms, it is sufficient - 1n accordance with 'I‘able 7 of Sec-

tirn 24, - to retain, in the derivative of stt) , with respect to y only the terms

1,22 1
r(z)H' 23 _20%0" cos (py—2w'—-20") 4 (e )H}jg:gcos PY.

Thus, for the types in which q = 4, we will have

Hp= 575%:))* 22 Hiloge" cos (20 +20") + P(g* ¢™),

where P(p'2, 2") is a polynomal of the fourth degree in p'® and pm™ which,

incidentally, is independent of w and «”.

E,

In studying the function H“) » we are limited to types in which q 2 L. If

= 3, the discussion wouid become much more complicated. Nﬂverhheless, by

cancehng the coefficients

1323,0  pyisd,
Hy'Z5h, dy '_1,2-9 and Hl_ -1,

in the expression (9) for the function g Y2 s, We found that the function H(?)

actually. contains a term with the argurent 2o’ + 2u".
Let us now assume that the functicns
8iz, &, 8" 412 ") and Hylz, &, &% 1, 1")
are known. Starting from the function

o! ot LN \ 1
S(zir;‘):: *3 ‘!I. ,;17; )

we can form the canonical transformation

:_-t_iS ,1" == --ds

,;which, because of eqs.(5), can be also writter as

i
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¢

T

d(S— S‘°’) . . _d(S—89) L%I*
2 2y e Tdy T Ye — Yy = dzy i
. , d(S — S d (S — S x
y—p, =20y L SCET (16)
d @, d(§—89 |
§ _".E" == (Sd ',S_)' rlit—’i ( dr" ) :

=1

It is easy to solve these 2quations and to express the variables z, §', §"; ¥,
T, " as functions of the variables z,, S*, E%: Fus Ty TR Since the func-
tlon (16) satisfies the ecma.tlon of partial derivatives obtained from eq.(3) by
writing there simply zy, i}, 5% instead of z, €', &", it is obvious that we wlll
obtain :

In (Z, §': §”; 3}9 7)'0 ’;") = H# (z*r §r*» E"*; 11'*1 17"*)’
" provided that, in the first term, the quantities z, §', €"; ¥, T] » I" are re-
Placed by their expressions as functions of the va.ria.bles Zus Sy ER5 Tas Mi» A%

1

Consequently, in view of the canonical transformation (17), the caronical |

“'system (11) of Section 24 will be replaced Yy the equatiors

i
'

dze _ diy____dH, ;
dt, ', dze (19)
d¥'y _JIH, dis _ _ dH, ?
d, ~dy,’ A T TaF,’
d¥'" _dl, dy's _ _dlly. (20)
dt, ~ dr'y’ dt,  dE'

The quantity z, is reduced to a constant, since the function Hy does not depend
on the a.rgm.‘ent Vaee '
'f However, it is easy to obtain a further simplification and to reduce the
icaronical system formed by the four equations (20) to another canonical system
which has only one degree of freedom. For this ovurpose, we set

3 : !
S'e —0'a COSWy, 7'y =20y SiNWY,

Ela=@"e cOs 0y, 1"s=¢"ssin0'. (21)
|
|
I
I

‘The characteristic function H, of the system (20) depends on u,* and u} only in '
‘the combination w* + m;;_ Consequently, instead of the variables ;
| !
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it is convenient to introduce first

and next

Vg = o7 —100% .

The two transformations are canonical. Thus, we ultimately arrive at the follow-
ing final equations: ’

2y dve _ _QH.

ze =const. , A (22)

- {1“': — th

%y = const. , d1, = d§—x; s (23>
‘ diey _dH.  dew _  dH,

At Tdey g, die, (24)

After integration of the canonical system (21,,), which has only one degree
of freedom, we can obtain the ar—uments y* and wy as functions of t; by quadra-.
‘tures, over the intermediary of egs.(22) and (23?

Let us recall that the characteristic function H, is given by the expansion

Hy=HY + uHD = *HP + ---,
Above we had already discussed the character of the three first terms. Qé

1 By making use of the definite variables, we obviously will have

HO =h(zy)— 1 #'24 = ~onst,. ;
{ The function H( ) is a polynomial in p? x2 ¥0ich is of the second degree if |
lq 2 [, and of the thlrd degree if q = 3. !

i

'? If q 2 5, the function H ( 2) :Ls independent of w, and, in addition, is a ‘
,pu.;‘momlal of the thlrd degree in p® we Conversely, for the types in which q = 3|
or L, the function Hy®) is a linear function in cos 2w, with coefficients that |
are polynomials in pik. ;
| i
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- -special, we do not believe it necessary to discuss it in further detail.

In gereral, the furictions H(‘) are polynomiais in pi and n,; they are
rational with respect to the constant z, and are periodic with respect to tue |
argument v, with the peried 2m. :

Integration of the canonical system (24) is very easy since the derivétivef
T (25)

i3 not small for the initial value of % p2. Then, we can again apply the method
given in Section 1 and reduce tihe problem to zero degrees of freedom.

If, at the origin of time, the derivative (25) is small while the second
derivative

dtH) (zéi
(d%e o) ;
i
|
is comparabl. in magnitude to unity, we can proceed more or less in the same ‘
manner as that given in Sections 10 - 12 and integrate the system (2L) by means
- of ellipti: or trigonometric functions, depending on the various situations
~that might cecur.

The derivatives (25) and (26) cannot become small simultanecusly except 1n
the case in which g = 3. An application of the Jacobi integration method, !
based on principles similar to those given in Section 10, will then lead to a /2
differential equation in S which is of the third degree with respect to the

‘quantity -%%——. In this case, the elliptic functions no longer are sufficient !
v * 1

1 '
for integrating the system (2,). Nevertheless, since this case is rather i
: In addition, it is sufficient to make a few general remarks on the nature :
of the solution of egs.(22), (23), and (2,).
: Let us primarily consider the first Jacobi integral

i
: A, =5. f

|
t

|
‘Because of this integral, is a certain perjodic function of Wy, with the

iperiod m. Since Hi » is constant and since *} does not depend on w,, it is |
cbvious that p? remains more or less conctant. It is also evident that ;
oy cos wy and Py 8in w, are still certain finite and periodic functions with l
Irespect to time, having a perlou I which i3 extremely long and at least compar-|
‘able to v~ ?. The period 11 is a certain function of Lhe constant h (and of the ]
xpa‘auw .Crs G and ), appearing in the Jacobi integral., i

? If the value of the derivative (25}, which is more or less constant, is |
Inot too small, then the argument w, will posseas a mean motion such that w, in-
creases (or decreases) by 27 as soun as t increases by the period . For certain
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values of h, the period II becomes infinitely large. In addition, if the value
of h is located between certain limits, the mean velocity of the argument w,
becomes zero; in this case, there will be libration and the argument wy will be
a periodic tunction which oscillates between two ext.eme values.

Let us now return to the variables Dy Pyand py = nyo Evidently,
these functions have the period 11 and are more’ or 1ess constanu. ‘

Let us now study the arguments y,, &, and w", considered as functions of '
time. After having expressed H, as a function of "tue variables *
2z 307, 100 we,
we will have /28
dily dH,. dw's di, do's_ dH*

=T =

dt M4z dt T T Mdfer

dt d% g "

All these derivatives are periodic functions of t » with the period H. Let us
denote by

v, wv', wy" (275

| z
the mean values of these periodic functions. In this case, the quantities (27)
are the mean motions of the arguments i

’ ! o
Ynr) Wy, 0y, !

By neglecting », we will have

¥ == }i(z‘) +ey

V’=I_I'+..., (28)

Ylas P e,

|
We can then pass to the functions -"tx-’ T. » N} which are given by !
|

eqs.(21) These functions are obviously Imlte a.nd slowly variable.

Let us now return to the relations (18). These can be solved for the un-
Tknowns z, €, 8" vy, N, I" in accordance with the Lagrange method, generalized:
to three variables. I\fter performing this solution, we replace there zy, &), ;
%5 Ty Tl\(_, n% by thelr expressions as.fungtions of L. We thus find that the |
dif.‘ferem.es 5 -2y 8 -l B - BN ¥ - vy, T - My M = MY are small oscil-!
"ating functions with slow variations. In the types in whn.ch q = 2, all these |
differences are of ,the order of b c. If, conversely, q 2 L, the differences E
E' -, §" - 51 Py - yf., M o= My, M - M4 are of the order of b whereas 7= Zy
is of the crder of w1 From this, we can conclude that the arguments y, w',;
and w" [where the two latter are defined by eqs.(1L) of Section 2,] have the
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quantities (27) as mean motions. |
Finally, we must mass through the substitution (6) of Section 24, the /29
rormula (36) of Section 17, and the transfoima®ion (13) of Section 16 to arrive
ultimately at expressions for the primary variables x, 81,83 71, Ny Te de-
fined in Section 2. We note here specifically that the differences x - X1, ‘
Ee ~8ks 7 ~Y1, & - T, are small oscillating functions being of the order E
of » ¢nd possessing rapid variations. |
.o The obtained results can be combined in the following formulas, which can ,
w serve also for classifying the various inequalities in the theory of singly
critical planets:

=2, + (v, —%) =2, + uz + (x, — &,)
= (Z, + pzy) + p(z—24) + (z, — 2y), !

h=wt ('Jx—z'/:)=y'+”—;igs+ (=)

i , ¥ . ,
) =(?/*+P—p—qt)+(y—;’*)'*'(!h—!/x)»

§=8 + (E—8) = (¢ + Vud'a) + Vu@E—8a) + (55,
=+ 0—n)= V.‘T'f* + V.‘_‘(ﬁ'""i'*) + ('11“"71);‘
- E=& o+ (5—E5) = Vid's + Va(E"—5") + (5:— &),
n =i + (=) = Vay's + Vo' —'s) + (n—,).
|
The inequalities of each element are thus subtdivided into three groups. The

‘inequalities of each group are sufficiently well characterized by our above
*+ discussions.

: In accordance with the definition of singly critical planets, the value of 1
*" iz and thus also the value of the parameter z, must avoid the vicinity of certa
> ‘numerical values zgg . We will express this condition in a different manner.
" Let

-2

; n, =1 and —ps"

B

@be the mean motions of the mean longitude y; of the asteroid, of the mean longi
‘tude ya = t of Jupiter, and of the longitude d = —wy of the ascending node /30

‘of the asteroid. For critical planets, the quantity
pn—(p+qn

|
|
i

%5.3 of the order of u. For singly critical planets, there is no linear expres-
' 'gion with integral coefficients o and B 'and of the form

a{pn—(p + @) n}— By

196

— —— e ——- - v— o - opu— S A e

o 55 b - LN



which would be small with respect to u. (We assume that the values of « and B '
are not too large.)

'Section 26.

in determining, in the preceding Section, the various terms of the func-
tion S, we encountered in each integration aivisors of the form of |

tpr(z) + (}‘I__j-n) W,

series yielding S and Hy at a certain term, the introduced divisors will be
finite in number and correspond to certain limited values of the numbers ¢ ani
3 - j". We have assumed that these lelsors, of finite number, are sufficient+
ly large so tnat the first terms of the series converge sufficiently rapidly.

!
where the whole numters ¢ and j - j" ar¢ not both zero. On terminating the |
|

Let us now see under what conditions ihe series (4) of Section 25 no ly.gef
are applicable. This will happen as soon as any one of the divisors becomes tod
ismall. Let us assume that thc value of v is suffiziently smull so that two E
divisors will not become too small simultaneously. In view of this, let

- 3 -
V=apr@)+py=—"Le—j,,)

~
[
(S

1be the unique small divisor. It is now necessary to find the greatest negatlve
nower of V in the various terms of the series (L) of Section 25.

Let us first investigate the types in which [ﬁl

I
1
|

g=23.

: Primarily, we assume that th. function S'*®) is the first tha’ is bgcrease@
by the integration. In view of eq.(il) of the preceding Section for st ~ it
is obvious that this will happen only if .

| a=1, —3<pZ+2. (2)
1In the expression for §° U?)f the enlarged term includes V', quation (12) of
Sectlon 25, whi cn gives H* and 817, indicates that *h= “rlnc1pu4 terms of
H') include 972 and that the largest terms of gt vont?ég vV . We have not
written out the equation which determines the function S . llowever, it is
obvious that the most expande?.garts of the second memb?f3of this equation are
Iproducts of a derivative of S and a, efivative of S 2 The highest nega-
tive power of V in the expression for s thus will be v™®. The gencral law
i obvious. Under the conditions in question here, the expansions (4) of Sec-
ition 25 progress, in reality, in powers of the quantity




(e

. ,[ Seeond];r let us a.s-aume tbat tha smail dlvlsor a.ppears for the flrst t:une
, -~Jin bhe furstion 3¥*). To define the oondxtlonz uwer wh cn {tkis might- happen,
' 4,1t is necessary to study the arguents of the fupction : ven by eq.(12) ofj - -
' -~o\.*t.10n 25. In all arguments of the funciions ;P and S as well as of ~

- 5-~*thau~ derivati 1ves, we have, “in accordance with Table 5 of Section 21;,

SN Lo t=1, ,—3_4<_i'—7"7,<_+2. o : ()

H _100mequerrt.1y, in the arguments of t.he products of th=se pau-wise derlvatlves,
—-we ml.l. have eit.ier ‘ .

5-—”:3

~b

Taol (=0, /—~55f—7",€_+5, A (i»;)
g s : . - . , -5 S
2 oper I S : Y 7
:'_':f y - :5'__‘ = L=2, —68<y—7"< + 4. - .
R . E B S 2r—rs ’ (55

S :b_,,: 3 -
9. _n a.ddltlon, Tab%?s 1 - 3 of-Section 2h show that the :mdlces of the argumenbs %
20 _lof the function alo? satisfy the conditions (4). Thus, the arguments of |
2:_ithe functions. B ang st (e characterized by the conditions (4) and (5). I*L

2. is therefore ob"ious that s'1) will be the first expanded function only if -

2o a'=2’ ‘?=—~5‘ .—3- _ll + l! +—3- (6§

—_— [ — ——— —_— — L —.J_h.v,_.

27 In the expresxion of 5(1)’ the enlarged t.enns then mclude 1 Obnously, ‘“he z
- 28__ifunction H(*” is not expanded in these cases. -
0 4 -To investigate the small divisors of the function S(ab) » it is not neces- ;
oy iary to write the equation defining this funclion in great detail. It is suffi
32 ic:Lent to note that its ?econd term is linear with respect to the derivatives of
,»- lthe expanded function S and that, in the arguments of this second tem, the
-inumber ¢ can assume only the values 1 or 3. From this, it follows that Vv ' is
( encouxrt.ered only in the expanded porbion of the function ‘¥, o
L O .__l 1
,’7 — Let us now mss to the equation which Jurnishes H(*a) and '3, In the
*"--isecond member of this-equation, the most expanded portions include the square
iof a derivative of S''’. Certain of these gort.lons will be further expanded by
~ tthe integratisr. This demonsirates that §'%) contains the small divisor ralsed*
*  lto the third power and that K> contains its square.
o It is easy to perceive the general law. In the cases (6), the series (1)
'of Section 25 are expanded s in realrc.y, in powers of

E

pa
- i.,,’ !

i
A

3

oM !
!

Thirdly, let us consider the cases in which 3'%) 33 assumed to be the
< first exparded H{]\}chtion. The conditions (3) are satisfied for the arguments of|
‘the functions and ‘¥ and of their derivatives;-similarly, the conai- |
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t:Lons (L) or 5\ wre satisfied in the arguments of the functions H'?, st L’Q
’»- *1 and of treir derivatives. In view cf this and since also the form of t.he i
3. arguments of the function #) g given, it is obvious that, in the arguments :
i —of the fuaction $'®’ we will have either -

et

e=1, —8%7—j"<47, ' 7 (7i

Y or : : 7 ) j ;
S t=3, —9<7—7"<+6. (8;

~ Conseqnently, the functlon s{¥) 511 ve the first enlarged functlo'l only in thg
> cases - of 7
o =1 :?-—-8.—7,—6.—-5.—4,+3,+4.+s,+s,+7. - (9?

‘\ . - - a=3, p=‘—'8.—7,—5,—,§..-—2,—1, YL, 42, 44,45 - - (10?

L]

8

[hes

H
|
i
i
i

® fhe principal terms of S'* then contain v™*.

K TR U

- The equation, yielding Hf,f) and 3‘"’:’ , has the form

33 .
DY

It

- " DS Ho—H®, ) ‘
: ‘—~In the expression-for ‘1‘1‘2) 5 we will-only- write the- expanded portion.- For -
~"—abbreviation, we mske use of th..symbolic notation

3 dSvdf

3. . fe=
.- 0i a," dy dy

‘73 ) + zu { St df  dS d.” 2,,dH(‘h) af (11)

9F AT Ay dff T A Ta@F &y i

“--In addition, we will denote by

-

AN, f

the most expanded portlon of a function f, i.e., the part of f which contaipg

the highest negative power of V. In view of this, the expanded portion of 2 ’

T will be , -

!
i 7 0 Som, ; (12)

1

‘In the arguments of th d,ae{:watlv 3 of §t¥R) , we have ¢ = a. In the argun.ent.s
of the derivatives of H' and S , vwe always have ¢ = 1. In the arguments
of a given product in the expression (12), we wi)l thus have ¢ =« + 1, So /34
ﬁbhat eq.(12) can furnish the expanded terms of *a’ or the terms of 5'*) doubly
'expanded by integration, it is necessary that @ = 1 be a multiple of «, i.e.,
that, @ = 1., Thus, in the cases {10), the function H(*a’ is not at.all enlarged

AR
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and the function 5’ includes only the power V-1, We state that this is the
-. 1 f dg(ale)

.. :same for the cases (9). In fact, in the arguments o we then have -

dv

o

~whereas we have

iy . -

’ (1f2) .
in the arguments of _gs_.__ {32}
; dy

spect to €', E"; W' or ", we lave

. Similarly, in the arguments of S with re-

LI . =1, T 1,
G :whereaswewillhave yor=p

o S R Y 3 |

2. !4n the arguments of the cerivatives of H¥) and of 5¢¥R » with respect to thes,L
3* ‘game variables. Consequently, in the arguments of the expression (12) it is |
3 _never possible to have ¢ = sx and i’ - j" = sB. Thus, also in the cases (9), !
3"—-?3_}_1? fanction H‘*a’ is not enlarged at all and the function §®) jnciudes only |
A ' ) i

>3

¥. .. . The-equatien, yielding 8%, has the form - - - ... e

-

N, ‘ ’ DS - o,

M :
ﬂ'fl‘he sec?nd term i? linear with respect to the derivatives of the expanded func-,
- tions 5% and 5'%. It 13sults from this that the function S°*) contains at,
' most V2. It is easy to demonstrate that S %) actually includes terms in v 2..
-To prove this, it is sufficient to recall ihat the function H2) contains the .

i part . Léi

O
oo ' : " {g HM@Ser  gHmgSen
: “~ | ds &) T ay dF [

In the functions K and H(*” we will only show the terms ;

| Hygdet + HyS 3,
;'which are terms of the second degree, common to both Y and Hf*” . The re-
. sultent terms, in the function » obviously are

i

" l.%ﬂdg"/” 1,0,2 dSow

’ ?\) ; 2Hy g0 e + 2H°'°‘°W .
. The corresponding terms of S5 are once more enlarged by integration and, ;
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i
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e

We will demonstrate, as before, that the expression B2 i1l no longer be
expanded by the integratior, and that this same expression contributes rothing
The cther parts of the expression (13), conversely,
which include v~2

to the function !
yield the terms H&‘

: . iconsequently, include V2.

Let us now pass to the equation yielding H,>) and 5¢°’:

DS® = Fa _ g®),

e 4 3 (dg""’) o {(

times by the integration.

parts of the functions S
following Table:

e

. The most expanded portion of H®2) obviously is

)~ )

i
i
|

and also the terms of st enlarged threé

It is easy to contlfme in thls manner and to demonstrate that thLe principai
include the small divisor, as shown in the

") and

sem, 8@ ;v
et AV
S®, §em . v-s
S : V4
. S0, 8& ; T3,
s V-8
SO, Seu: -1,
SO . V-8,
Sem, §® : T-9;

H®:

H®:
HY:
HE:

HY:
HY:
H®:

..............

Consequently, in the cases (9) and (10), the series (4) of Section 25 can

Finally, we will treat the more general case in which the function st»)
. 2) is assumed to be the first function expanded by the. integration.

In this case, the principal part of s'*? includes v7%.

The equation yielding H**¥®) and s**¥®) nas the form

_u

("’ — Zq, ﬂ)’

201
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Ds(m+,}) — H(m“'-}f), ,_H(.".‘}) R

The expanded portion of H**¥) opviously is

o . 38,

As on P& 200 ve can demonstrate here that H("l/a) is not at all enlarged and
that S includes, at most, v

The equation, defining H***) and 5‘**'’ is written as

D 5tm+d) — Hir+n — Him+1),

'tions () and s , it is obvious that H{**'’ can include at most v* cand |
ithat S'**!) can rontzin at most V2. As on p.201, we demonstrate that $'**1) |
actually contains v 2.

%th" g, it is easy to deronstrate €, as we had done above for H‘"Vz)
;' and S '; that Hy**¥) does not contain ¥°2 and that S'**¥) contuins at !
oo most VT, and So on. |

) Thus, in all these latter cases, the series (L) of Section 25 are actuallyj
'expanded in powers of the ratio

i
[ ‘
I z—E,,,, i

, i
i t

Llet us now investigate 'the influence of a small aivisor v, for the case of
‘types vhere !

o g=14.
J Then, the expansions yilelding H and S include only whole powers of u.

Let us first assume that a small divisor appears already in the function

:: S“) . Table 7 of Section 24 indicates that this will happen only in the follow+
ing cases: !
% 4 a==ll ”—45ﬁ_<.."'4s ﬂ"+3- (lb_j
’;In view of the general character of the functions "2 ’ E(:’) s e+0,y it is obvic

;that the series (4) of Section 25 progress then in powers of
N (z-— 2q,5)°
i
1 Let u next assume that the small divisor is first encountered in the
function s'*) (m 2 2).

B

202

Since- '-i(' 1) s }1nf=a with respect to the d rlvatlves of the expandec func—- ZEZ

40 0 v



* Evidentlg, the small divisox ente{s+the function 3**!) raised at most to the
. a

The equation yielding 5'**1) hag the form

DSm+N = Jlm+1) _ flun+n),

It is necessaiy tc fix the expanded pcrtion of H**) | For abbreviation, it Qg
is convenient to introduce the notation ;

(7= 3 d8Sgf + 2,, ’_,,{dS“’dl dS(“df} 1

#dy agt 2 Y\dy ds T ay d 5
(15)

L aHYdf yrfaHnd] el df 1

dz ay d¥ dyf T dy dff’ ,

The expanded portion of H**1) will then be
0O §m, (16)

It is easy to demonstrzte that this part of H**1) contributed nothing to the .
function Hy®**’, from which it follows that H(*"“ is not expanded at all. :
power V °, To demonstrate tnhat S 1) 4 actually enlarged twice, it is suffi-!
cient to recall that the funciion (i%) includes the terms

'

d§im S(m)
2HYSLT ¢ omya3dS |

(n+l)

/(see p.201). The corresponding terms of S are enlarged once more by the

integration and, consequently, contain 72,

: By treating in a similar manner the equation yielding }’f,,:”) and s'**®, 1
it will be found that the function H**?’ contains at most v~* and that the }
principal part of 3 ***) includes v7°. :

j The general law is obvious. If 5'*) (m 2 2) is the first expanded functioni
the series (4) of Section 25 will be expanded in powers of '

Let us now pass to the types in which

: g=3=5.

i
i
i
!
i
i

; Let us first assume that s{¥) i3 the first function enlarged by the 9
iintegration. According to Table 9 of Section 24, this will happen only in the !
icases |
? a=1, —5If<+4. (a7}
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I
+
T

is

2 ._.,cases are treated exactly like the corresponding c?.ses for q = 3. The same re-
*quts are obtained, with the only exeception that S

h }(!§.201), demonstrating that the most expanded terms of the functions S

Then, the rvincipal part of S 5¢3) includes vt

)

S.(a)

The equation y:elding H(*a) and is written as

DS® — Ho — H@,

e v s e ek

The function E‘a) o{ the seccnd term does not contain the derivatives of* the
;expanded function S Thus, *2 and 5¢2 present no small divisor at alil.

The discussion can be continued as in the corresponding case for ar
al and
contain negative gowers of Vv, as indicated in the Table on p.201, with the
only exception that st is not enlarged at all.

Thus, in the cases (17), the series (4) of Section 25 are expanded in
puwers of

s
(z—120,8)"

Let us next assume that the first expanded function is st (m 2 2). These

is now not enlarged.
‘Consequent.ly, the series (L) of Section 25 progress in powers of

, "

z—-E.,_g

Finally, a few remarks should be made on the types in which
q7>6. i

© Let 5*) be the first expanded function. We still have m = 2. As on /4G
p.202, we demonstrate that the series (4) of Section 25 are then arranged in |
-ipowers of

i u

1 L

i

- i

| z—-zq,a g
: |
|

'
¢

After having studied the influence of the small divisors on the formal
iconvergence of the series, we will further specify the definitions given at the:
'Lbng:.nning of Section 2. We will postulate that a planet is singly critical if
the integration method of Section 25 is applicable; if, conversely, this method
“becomes illusory because of a small divisor z, - Zgg , we will postulate that the
,planet is doubly critical.

5 In the cases

9=31 a=1, F)="‘3s“”2:"“1303+1s +2,

ithe planets cease to be singly critical as soon as the quantity |z* - ;c,gl be- |
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icomes comparable to ulfé,

In the cases

g=3, a=2, §=—5—3,—1,+1, +3,

g=4, a=1, f=—4,—-3,—2,—1,0,+1,+2, +4,

tlis will happen as soon as Iz* - ;q,gl is of the order of “113.

In the cases

g—3 a=1, f=—8,—7,—6,—5,—4, +3,+4, +5,+6, +7,
q=39 « =3, .3’_:—8’—71—“5)—4’_2"‘"1: 41, +2y + 4: + 5,
g=>5 a=1, §=—5,—4,—3,-2,—1,0, +1,+ 2, +3, + 4, .

‘ i
‘the limits between the singly and doubly critical planets are passed as soon aSI
|2 - '221,3] is of the order of w

i
’ Finally, in all the other cases, the planet ceases to be singly critical |
as soon as Tz* - Ea,al becomes comparable to K. |
. !

Section 27. [5_1

L Sections 27 - 3C will be devoted to the theory of doubly critical planets.'
Thus, we assume that the initial value of the variable z is located in the
v1c:m1ty of a certain value zqg , defined at the beginning of Section 25.

The principles of Section 1 are still applicable. Only, it is now neces- |
sary to select the new characteristic function, denoted vy Hyy, in a different ;
manner.

Let us retv:.. to eq's «(11) of Sectlon 2,,. Starting from the known charac-
terls’clc Sfunctic. H(z, & , §"; ¥> W, T") and from the unknown function Hyy(z, '
-§ , " v, M, "), we must form the equatlon of partial derivatives i

| S ds ds . ds 48 d8
j H jy Z: dr”' »7?: ']I)‘=Iitt(2n &8 S dz dtl d;" ('L)

here, we must introduce the expansions

.

H=HO 4 s o 4 g HO 4 HOW 4 .
How = HO o+ W0 BYD + W HE + 00 HE + o,

| S e 8O 4 (S g SN 4.yl SO 4 ... (2}
l I
i
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fand then compare the coefficients of the same powers of u in the two members.
Setting : ;
8O =zy + &7 + 5, 8§=80+8,

eq.(1) becomes

t

f A8, o 45,

; H(Z“l"—",é dﬂ,,_ +d1}"’y,',1]

i ... 48, . ds, ., dS, 3
! "H**(z,sa§'!l+ —::+drt”ll+dgf')

This equation is satisfied for u = 0, if we put

HO = HO = h(z) — 2"" (£ + 7). (&

ST A

i

!
f o 7 DS HO — Hp, (5?
|
|

The second member is a finite trigonometric series with terms of the form

1
i

i
i

A cos(epy + 70 + 7"0"). (6)
The corresponding terms of 5'¥®) then have the form |

° 4 sin (tpy + 7o' +§"0")
tpr(z) + (7' - j") v

¢ obtain g'*® ithout small divisors, it is sw'ficient to combine, in £y,
all terms of H*)in whose arguments we have

T |
‘ |
; |
\ t=ja, §—j'=jB, j=0,£1,£2,... @
| ;
! Now, let f be any function periodic with respect to ¥, @', =nd w" and ex-

|
ipandable in a trigonome“ric series with terms of the form of eq.(6). In Sec- ;
i‘bions 27 and 28, we will denote by !

% v |
| |

the ensemble of the terms of f whose arguments correspond to the small divisors,
i.e., the ensemble of terms of f where ¢ and j' - j" satisfy one of the ocondi- -
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By equating, in eq.(3), the coefficients of p¥® in the expansions of the [4
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]r K3
itlons n.
In view of this, we must put in eqg.(5):
HE = [He),

WLif2)

Then, this eque ion (5) yields the function 3 without small divisors. ;

Let us now compare the coeffirients of p in the two members of eq.(3). :
This yields '

|
DS — H . (8)

where we have used the notatiou &’ 3

| dHBASH 3 dSea i dstns
, =10+ 3G G () = 2% )

|
dHPF A8 YD dSUD g (dSeas (9)
—y 3T (IS f

TTay dz T gy dE 2\ aF

' The function H}) will be determined by the relation |

HY —[A").

Then, it is possible to solve eq.(8) for a function s'*) without small divisors.

i

, Evidently, we can centinue in this manner and successively determine all
terms of the series (2).

Jt is of importance to mention that the odd powers of /i vanish from the
expansions yielding H, Hyy, and 5, as soon as g is an even number. This results
from the last of the relatlons (25) in Yection 24. We also menticn here that

Ethe functions H('z——z)’ H(;g-) , and S(’g?) are the first that can depend on the

argument y.

; After having defined the functions S(z, &, &"; y, ', M") and P-x-*\z’ g,
€"; y, M, M"), we start from the function

S (Z**, 5'**’ §”*t; !;’ ’)" 12")

l;-.md from the canonical transformation

é s .48

‘ zﬂd:u;' Y= g2 t'
o 48 Voe =5,
S =d);" t"'d:r
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& a8 " ds
S

Tap TeTaEy
< which can be also written as .
[hk

. diS—8® . . _d(S—5 :

. T 234 = “d‘{’—— y= dzyq
o __ d (S —S8%) 2y — ! d (S ,S(O)) :
s"":ux=—’d,], ’  #& = mn ( .
10)

B 3."" .z a(8—39) noo ( a(8§— S(O))
s S = ——d—r_;'{_—- R ] d‘"“

HE It is- poss:.ble to express, by means of this transfomatlon, the variables zy &

crongg = s an oheeear s

gy, T, T" as functions of the new variables 2z, Syur Shui Fius Mises Mhyee
3 Thus, we obnous.l.y will have . :
2Dy - H(z &8 9,9 p )—- Hoypy (Zans S'as S en3 Usas ’;':n. 74‘":n)- :
ol - ‘ ' ' 3
2! .Finally, the new variables satisfy the canonical system ;
25 E !
: i dz“ dHu d!?n d”u

L : - At, T A dt, dzee

:~ ‘, d*_g _dH,,. d'? *% AH s 11
RS dt, Ar'es d‘ - —;1;:7:; ’ ( )
M Ay _dHyy  f'ss dHa: '
L dt, ~ dr'es’ dt, di's

3 This system can be reduced to uwo ¢ rees of freedom. To obtain this, let;

5 U8 define the quantities P, PNy; Wiy, Wiy by the relations

. T ' ! ’ ! 3
S Sak = Qus COS Wyy, Var = Qlas SID Way, ;
| i
. : o — ! " H
# ; S #%k = 0 5% COS () gy, F;"‘* = 9"** sin lﬂ"*‘. X

‘
1

In view of this, it is convenient to introduce first, in eq.(11), the canonical!
wariables

I
i
|
t

|
. |
Zaxr Yins !
o tehe G |
K !
e 3 Qsz "'“#lh - {
]
] ! i
| 21 .
and, next, ths new variabies (!‘:5
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Za% " 20,

r=- ap V= (PYae— R0y,
=1, V=g + sy, (13)
1/*.———*97.1.;02 _*e..’ —ll)"a‘,

which obviously are a.lso canonical. The function H,, is perizodic with respect
to the argumerts y,,, « H_, and ®w},, with the period "2n. In its trigonometric
expansion, we encounter oniy the arguments

’p."/vt + 7"(“':‘ + ]'"(J "‘
where
A l=jﬂ, :’_7"2’7.[?1 7‘=Or:’:l:i2,--.

The general argument of the function Hy, thus will be
‘Pi’st + f‘"ltt + j"‘"h** == 7.9 + ,?V'. (114,)

Ccnsequently, the function H depends only on the two arguments v and v and
does not contain the argument -w},. The variables (13) satisfy the equations

dy _dHye — dv | dHy
dt,  dv dt,” ~ dx ' (15)
dy _dHe dv'_ dH,.,
dt,  dv ' di, dy
do'sy dH
%yq = const., e o R
i dt, dl"*t . (16)

Equations (15) form a canonical system with two degrees of freedom. After its
integration, we obtain the argument w§y; by a quadrature, over the intermediary
of the second equation of the syztem ﬁé).

In the expansion of the characteristic funciion
° : . J
Hyy(Zaps S 5'aws Yans Tk U ax)s
which is given by the series /&6

* Huw=HE+ @ HE + o HD + -, (17)

we: must introduce . .
Zex =23+ apy,

(’o'c h 2Z'x (18)

o

; Ces =224 — 28— %4a
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and also make use of eq.(lL).
This will yield

Hip = N hf cos (jo + j'v).

ns (19)

This sum includes cnly a finite nmumber of terms. The quocients h(;,‘?;-:(._&T ) vl
are polynomials in x' and Ky, as well as functions rational with respect to
X. 1In addition, h‘.‘i. remains finite for X = O since we have everywhere avoided
the small integration divisors. ‘

In particular, according to eqs.(4) ard (18) ard according to the defini- -
tion of the quantity 23 given at the beginning of Section 25, we will have

HE = hlegg)— 5 (62— 63

= o O — WPy (Za ) + BV h(Zag) — 3V 4ge
1

=Ady*— 3 244 + const.

with the notation

- 3a'p?
4= 2zt

in the cases of interest here, the variable x will have values near zero.

Section 28. 87
For the further discussion of the system (15) of the preceding Section, it’
becomes necessary to investigate also some of the other terms in the series (17)
of the same Section. This will lead to an enormously large number of different,
cases, obtained in accordance with the values of the whole numbers q, @, and B..

For each given value of q, we will arrange the different cases (@, B) in
various groups. For a given value of q, we will designate the group (m), as
the ensemble of the cases (@, #) for which H{i’ is assumed as being the first
ccefficient dependent on v in the expansion of the characteristic function Hypo
Re’low, we give the list of the first groups for the various values of q:

Groups ¢g=3:

(1) HPwmoO dependent on v;
(1);: H{P =0, HY) dependent on v; “
(1) HL{P =0, HY independent of v, Pﬂ;’f’ dependent on v; ‘
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(2)y: H{P=0, HY independent of v, Kys®) = C, H2) dependent on v;
g==4:

(1: HY dependent on v;

(2): H® independent of v, ds.jﬂ,_) dependeni on v;
q=>5:

1),: HY) indeperdent of v, }{(,,f) dependent on v;

(20 HY independent of v, Hy¥®) =0, H,2) dependent on v;
q==6:

M W g :£2) .

- HJ] independent of v, Hy, dependent on v;

We will then derive the different cases for each of these g:oups. /L8
First, let q = 3.
We have snown that

H(D = [He9).

The various ‘.erms of the functicn g2 correspond to the six combinations
in Table 5 of Section 24. In all arguments of this function, we have

=1, —3<j+j'<0, —3<j—j"<+2. (1)

To obtain the terms of the function H(*Jf) , we must retain, in H ¥2) , all
terms where

t=1=ja, j—j"=jB.

Thus, the group (})s includes uhe six cases

('})l: a=l) ﬂ=—31—21'—ly0;+l| 1'2-

Below, for the six cases, we give the expressicn of the function }I(*f)
which always has the form of
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H{P = k%) cos (v + 7'v):
a, B Hed:
1, —3: 2H%0(27) cos (v—3v),
1, —2: 2H{*3%2y cos(v—2v),
3, —1: 2H 5% (20 cos (v —),
1 0: 2H)%% cosv,
1, +1: 2HS%0(2)(2) — 27— #44) cos (v — ),
1, +2: 2H'| (2 — 47— 244) COS V.

The coefficients }fi’f o are given by the general formula (23) of Section 2.
The last of the relations in the system (25) of the same Section show that s =
= 0 in this formula (23), from which it follows that the six mentioned coeffi- fL9
cients are polynomials in &, with numerical coefficients, i.e., with cconstants.,

let us now pass to the function H(_l) - We will have
HY = [}iml_

The expression for the function W'’ is given by eq.(9) of the orecedlng

Sectlon. In all arguments of the derivatives of the functions g2 ,

and S‘¥) that enter this formula, the conditions (1) are satisfied. .n all
arguments of the squares of these derivatives as well as in all arguments of
their pairwise products, we will thus have either

=0, —3L7+'S+3, —5<j—f"<+5, (2)
or else

=2, —§<7+4"<o0, —6<j—j"< +4. (3)

In addition, according to Tables 1 - 3 of oect.lon 2, the relations (2) cccur
also for all ar ents of the function H'!’ which appears also ip the ex ressmn
of the function Thus, in all arguments of the functions TJP ’ ** and
st1) | either the condltions {2) or the conditions (3) are reaiized.

- To obtain the termws of the function ".:H_) s it is necessary to retain, in

s first the terms in which 5
t=0, 7 =7"=even, !
and then all terms in which

¢=2='7'an 7.'—:'.”'“7.«8~
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Thus, in ‘f;,*) ) We will have in all cases a term which is a poiynomial of the

third degree in x', rationai in X. In order to have, in Hyj/ 2 , terms that are
deendent on v, it is necessary either that /50

e=1, —3<LBf<+2,
or else that

a=2, —5<8<+3, (8 beinz odd).

Ccnsequently, in the cases of the group (})a, the function H,._y.’ has the
forr

HQ =, + Db, cos (20 + f'v). (&)
,I

In addition, it is obvious tha* the group (1); irclufes the cases

(1)3 a=2' ﬂ=—5,“‘3,—l,+l,+3.

In all casuzs of this group (1)3, we find

HY = R + “hm cos (v + j'v'). )
’l

Finally, in all other groups for q = 3, the expression o7 }‘(*1*) becomes
6
H) = mn, (6)

In these formulas (4), (5), and (&), the quantity hgs’ sl'rnlfles a poly-
nomial of the third degree in X . MNevertheless the expression of ho,o , My vary
from one case to the other. The coefficients he,, gre polyromials in x' of at
most the third degree. Fimally, the coefficients h” are odd polynomials in
.fi of at most the fifth degree. All these czoefficients, in addition, are
rational in X and finite for x = C.

We verified that the sumz in eq.(5) contains only a single term in the
’l
cases in which 8 = -5, -3, +1, +3 and only two terms in the cass of B = -1.
. We also would like to make the important statement that the coefficient of
X'? 4in the expression of H*ly_) is p051t1ve if q = 3. This results from the fact

that the terms of the sixth degree of H_H_) coiacide with the terms of the sixth,
degree of the function Lﬁ;

oail () |

which is always positive if q = 3.
It is possible to continue the discussion without giving a detailed expres-
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sion for the function 'E(ala) . It is sufficient to recall the general character ‘
of this function. ‘lere, we first have tle term ’ in whose arguments we
have (according to Tables § and 6 of Section 24)

t=1, —4<j+7'<+1, —4<7—"<+8.

'

Fach of the other terms of the function W) can be considered as being com-
posed of two factors. In the arguments of the first facter, the conditions (1)°
are satisfied; in the arguments of the second factor, either the relatjons (2) °
or else the relations (3) occur. In all these terms of the function ¥ we
wiil thus have either

t=1, —6<j+j7'<+3, —8Lj—<+17,
or else
t=3, —9<j+j5"<0, —9<7—j7'< +86.

Thus, so that H(*:f ) does not vanish identically, it is necessary either that

. a=l» _8_(_]5‘5"'7,
or that

a=3, —8<pf<+3s
(0 and 3 being mutually first).
Consequently, the cases of 1he group (—g—) 3 are as follows:
«=1, 8=—-8,—7,—6,—5 —4,+3,+4,+5,+6, +17,

(1),

«=3, f=—8 —7,—5—4—2,—1,+1,+2 +4 +6.
'In all these cases, the function H¥*’has the form /52

- HEp = 0D cos (v + 1'v).
11

Passing, finally, to the functioni(a), it is easy to demons®irate that, in,
'all its arguments, the numbers ¢z, j', and j" satisfy the conditions contained |
.in either one of the three following lines: !

t=0, —6<5j+;'<+6, —10<j—j"<+10,
l,=2, _”9<j,+7."§_+3; _ll<7‘l_jlr-<-+9’ \
t=4, —12<L5+j"<0, —12<j—j"< + 8. |
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Thus, in all cases, a part of the function H.2) has the form
h(2 + h(()z’z cos Zv,

This is the part which is independent of v. So that H.3) will contain terms
dependent on v, it is necessary:

either that =1, — 5<pB8<+4,
or that a=2, —il<f<+9 (3 teing odd)
or else that ea=4, —1<8<+7 (8 being odd). "

Consequently, the cases of the group (2)., are as follows:

a=2, f=—11,—9,—7, +5, +1, +9,

(2),:
a=4, f=-11,—9,--7,—5,—8,—1, +1, +3, +5, +17.

In these particular cases, we obtain

H(2) h(2) (2) b cos 20 + zh . cos (1) + j’v’).

We will now pass to the types in which q = 4. 153
The various terms of the functicn X'’ correspond to the combinations of |
the Tables 1 - 3 and 7 of Section 2,. I. :ay argument of this function, we will

have either

(=0, —257+j"S+2, —43j—j"<+4, (7)
or
: =1, —-4<jH[10,  —4<j 'S+ 4, 243 @)
‘ To obtain H(;*) s it 1is necessary, in il s to retain first the terms for
which

l‘=0’ j’=j"'-_= even, T

;and then the terms for which
Ce=leja, ff'=j8.

',[‘hus, the part of H( 1) yhich is independent of v will be a polyromial in X',
independent of V.

The cases of the group (1) in which the function H‘ ) depends on the argu-
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ment v, ars as follows:
1): a=1, g=—4 —3,—2,—~1,0,+1, +2, +4.
In these cases, we have ;

H =R, + DAk cos (v +7'v).

jl
In all other cases, the expression for !-}(*;) will be simply

1
HY = hoh.

i

i

Tt is easy to write these expressions in detail. The first of the formulas

in the system (22) of Section 2, for k = 1, as well as Tables 1 - 3 of the ’
.same Section, indicate that .

10, = Hy&S6n, + Hybien ed + Hoddel
(9

12, 0,2 1o0 2
+ Hy 5002 + Hioodse + Homm*;ﬂ’u«
1

First, we must replace z in the expressions (922) of Section 2L by zZyy, in order‘i

to obtain the coefficients }éﬁﬁ ’ '8’,02, and }ﬁop; after this, we must make use |
of egs.(18) of Section 27. In ddition, according to Table 7 of Section 2l
_the expression of the part of ,.1*) which depends on v in the various cases of
the group (1)s is siven below:

a, B H‘.‘.’——hf;f’o:
1, —d4: 2HNA2,(27)" cos (v— 40), |
1, —3: 2H}!*.(2x)" cos (v —39), :
‘ 1, —2: 2H}%3,2x cos (v—2v),
i‘ 1, —1: 2H}L)o(2)" cos (v—17), i
1, 0: 2HYY3cosv+ 2HES 227 (22— rae) cO8 (v—20), i
1, +1: QH}YE o (24) (2% — 22 — 244) CO8 (v—1'), ‘ |
1, +2: 2HY}::(2x — 42— xys) cOS Y,
1

!
i’ , +4: SHPRL(24 —8x—nuuitcOs V. :
lEquation (23) of Section 2, end the last of the relations in the system (25) oi‘i
the same Section indicate that the nine coefficients H},}: } are polynomials in Q)%

Mth numerical coefficients, i.e., are congtants.
i

k To study the function H(,,:‘f) which is = [T{(a) 1, we note that T2 is obtainuc*
from eq.(9) of Section 27 if all the superscripts there are multiplied by 2.
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Let us first set aside the first part 2 o eq.(9), modified in this manner.
gt gstt)
d§' d‘pl'

whose arguments the conditions of one or the other of the lines (7) and (8) are
satisfied. 1In all arguments of each of these products, we consequently will

Each of the other parts is a product of two factors (e.g., ) in ¢

have either /55
(=0, ~4<]+{ < +4, —8< —f'<+8, (10)
or
(=1, ~6<f+{'<+2, —8<j—j'<4+8, (11)
or else :
(=2, —8<j+i"<0, —8<j—j"<+8, ~+T. (12)

In the first part H?) of the mentioned expression of w2 , all arguments also '
satisfy the conditions of one or the other of the lines (10) and (11). This is,
dndicated by Tables 1 - L and 7 - 8 of Section 2,. Consequently, in all argu- |
ments of the function H 2’ , the conditions of one or the other of the lines (10),
(11), and (12) are satisfied. ‘

=)

To obtain H;,*‘?) s it is sufficient to retain, in H , the terms in whose

.arguments we have

l=ja, 7.’—7."—_.7'/?’ j-‘=0,ﬂ:lvi2;-
In all cases, it will be found that the part independent of v has the form
+(2)

ao + A cos 20,

Next, so that H2) shall include terms dependent on v, it is necessary
. Ees
either that

) a=l) —8__<_|8_<+8,
'or that

a==2, —T1<p<+5 (B being cdd) i

Thus, the group (2)4 is composed of the cases
a=l, ﬁ=—8,-—7,—6,_5, +3’ +5|+6)+7: +8’

(2),: f
a'=2' ﬁ“—7b-5v—"3:“‘1: +l. +3, 4+ 5.
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.In these cases, excert in the case in whicha =1 and 8 - -3, we will have /56
HE =8 + B cos 20 + Xy cos e 4v).
”I

In the case in whicha = 1 and 3 = +3, a term is added for wnich j = 21 we
found that we there have j' = O, such that *he term in question has tte form

14?5 cos 2¢,
Let us now assume that q = 5.

Then, we have

HeW=0, Hip=9, Sw=g.

It follows from this that
3 HY = [HYL :
!
I
In all arguments of the function H'*’, we have :

i

s 1=0, —2<j+{'<+2, —4<j—i"<+4. (13)

r Cons;i;u)ently, the function Hf,,_l,%) will in all cases be the ensemble of the
terms of ' *, where j = j" = 0. Thus, we always have

HY =

iFThe exrression of }'é,é) will also be given by ea.(9).

', We now pass to the function Qf’ which j. given by the formula
HED = [Hew),

In all arguments of the function vk JR)

. , we have, in accordance w.:
i’l‘able 9 of Section 2.,

' '
: e=1, —5<91j"<0, —5Zj~—j"<+4. (1)
| :
j Consequently, the function H(*af ) yanishes identically excrpt : the cases |

X i

(@ e=1, F=—5 —4 3 ~2 -1,0, +1,42 ;3 .7 (57
{
|

iwhich thus constitute the group (%)5 « In these cases, we have

HEY = YA cos (v + 7).
."
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Ordinarily, the sum comprises a single term; only in the cases in which B = -1
or O will it include two terms. '

The function H;i) will have the expression

HE = [H®)], (15)

where

LERT RS R

BT N MEERS T
d: d?l dTI d;

W }1’ [(@S“) 2—_ d_§“? ] )
T as) — )

; In all arguments of the derivatives of the functions K1) , H(*;) s and R ,i
the relations (13) are satisfied. It follows from this that :

t=0, —4<j+7'<+4, -8<F—j'< +8 (17)

in all arguments of the function H2 - H® ., 1In accordance with Table L of |
Section 24, the same relations are fulfillea for all argumen,tg of the function
K2, Con.equently, they are satisfied by the arguments of 2 :

Thus, the function H(*i) s in all cases, is independent of v. This means
‘that the group (2)s does not exist.

: In the expression of the function H(%f\(.) s we could expec(tza. term in cos 2v' ;‘
however, this term vanishes identically, and the finction H)S  will still have
the form

H) = a@,
where h$2’ is a polynomial in X' of the third degree and independent of v as
well as of V' .

Let us finally pass to the types in which q = 6. a;g
} Our above statements cn the function H(*ﬁ,,) for the case in which q = 5,
remain valid also for q 2 5.

The sunctions H‘,&) and B are also g ven by ege.(15) ‘%Pd (16)(.2)'1‘119, con-
ditions (17) are fulfilled in all a ents of the fumction H 2’ H and
also in those of the arguments of in which ¢ = O, In the other argumente

i

of th's function V2 , we wil? have, in accordance with Table 10 of Section 24,:
| t=1, —C<j+4'<0, ——6<j—j"<+86, »+35,

As for the case of q = 5, we find also for g = 6 that the part of Hf,&) R
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which is independent of v, is also independent of v' . For all values of a and
B, this part of 3 is a polynomial of the third degree in X', rational in X.

The function Hf,i" might also include a part dependent on v, but this will
happen only in the cases of tire group (2)e:

a=1,
(2)e:
p=_6:_5;_4)—'3- ""2:'_']va +]1 +2, +3! +4: + 6.

In these cases, we will have

HE = h) + }_‘,h‘ 1.5 €08 (v 4 §'v').

According to Table iC of Section 24, the sum includes a single term if 8 = 3' -
i* = -6, -5, b, ~3, +1, +3, +4, +6 and only two terms in the cases in which
B = -2, -1, 0, +2.

In all other cases, we obtain
HA =1,
We should like to make one more remark on the types in which q > 6.

In that case, the functions H&.*) and h‘a) are polynomials in X' of the /59
second resp. third degree, rational in X and 1ndependent of vand of v .

Section 29.

We know of no completely general method for performicg the formal integra-
tion of eqs.(15) of Section 27. The campnical system in questicn enters the
tyve studied in Section 1. However, the method of reduction discussed tnere is
not directly applica.ble to the present ca.se,(smce the derivative of H( with
respect to X is assumed as small and since H** does not depend on the va.r:La.b.ua
X' . Nevertheless, we will investigate here a certain number of rather extensive
cases in which a formal integration of the investigated system is w~ell possible.

Let us assume first that the mltlal value of X is of the order of ul/a and,
in addition, that the initial value of X' is neither too large nor *oo small.

In our investlgatlon, it will first be necessary to exclude the cases of
the groups (%)a, (1)a, and (1)s, and treat them separately later.
It is convenient to put
X= .u‘l!z“ x’ = 2' + .“‘l.lx'l'

»
H“ + 2‘x‘* — C = ‘uG’ T == ‘ulhfl === !“h‘.
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We will assume tha® the initial value of !x;l is cowrable in magnitude to
unity ard that the value of the positive parameter X' is sufficiently large so
that /X' can be expanded in pow=r3 of u'°x].

The variables X1, X1} V, vV satisfy the equations

dy, _dG  dv
dr v’ dr dy,

: (2)
dy, 4G~ de’ _dG
dr ~ dv’ r dr,
In several formulas of the present Section, we will use the notation 160

£

to indicate the value of any function f(x, x' ) for the values x = 0, x = )? of

the two variables X and X' .

In view of this, we obviously will have

G=0G, + :Gy, + uG, + ---,
GozA;h"‘l‘.h‘m_

0,00
drgy dRE, .
G’.'ﬂ = d;'DZK y “d‘;??'lx' + H(:':,n
ELTIE T
YT Tdy untt dzdz* 't 3 gyt B
JAED T, i
iy 4t ay

2

In a given case of the group (r),, the quantity G.-, will be the first of the
above functions that depend on v.

Since the initial value of lel is comparable in magnitude to unity, we
can reduce the system (2) to another system with one degree of freedom. Accord-
ing to the method given in Section 1, we will start from the equation

(38 48 s )

I e ] AL 1, @9
dv dv” d"’) G (XI' xl ? dzll

by introducing there

.



G*—=G* + WG + «G*+ -, (3)
§==8, +u"8,+u8 + -

Putting
So=11v+ll'v’; §=35,+48,
the equation in S can be written as /61

y dés dés ,,( déS
"(l"*”duv Lo+ qv U v) G x,,y,,v+dll

In tre expansions of the twe members of this equation, we must compare the co-
efficients of the same powers of u

The notation

[f]l

is to represent, in this Section 29, the mean value of any function f, periodic
in v.

In view of this, we find successively

G = G, =Ay*+ ’ng:

214]1 "la‘g’-! + G g = Gx?,.

d’l“’ dhm
?l 71 dx' xu

=__._.__fH('I!1Hp

. »
‘. Gx;,

48, | 4 (85" , 4GudSy | dGidSy |
"'du"*“‘( R T R T TRl
=[G+ [(H""’)’J
1 &R, - H, dahu)
“2"'175-1 dxdzlelx +2 dx" XI

+ [H®) + -~—*[(H JH

---------------------

In any case of the group (r)q » the quantity S,., obviously is the first of the
functions Sip, Sy, +.. which is not identically zero.
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As soon as the functions G¥ and S are known, we can start out from the /62
function

S(z*, 7 ¢ v, ¢)

to form the canonical transformmatior

2{8~—8,)

ey # #0000 e, W0 T 0
LTk dv v v ax* (!4)
r ! d(S—S) g G d(S—S»)
¥ 8 “l;‘*‘-—‘“a?“’" v —o = Tdg*
In virtue of this transformation, we will have
Gt 15 v, ¥) =G* (0% 1. v*).
Thie new variables x? - X1 *, v*, v satisfy the equations
dn®_ dv* _ _dG*
dr dr ~ dxg* (5)
dp*_d6* . dG*
et A S T ©

Thus, xf’ is a constant. Let us assume that Ixf I 18 comparakle in magnitude
to unity.

The system (6) is canonicai, with one degree of freedom. By means of the
first integral

G*(Zl*’ Z;'*; v'* =g, (7)

where g is an arbitrary corstant, the quantity ¥ will be given as a function

of the angular variable v ¥, We postulate that the variations of X;* are com-

parable in magnitude to unity or less. This results from the expressions of the

functions Cg&, Gf;a, Gf. In fact, the first of these tunctions is constant with

xf’; in the two other functions, the three coefficients "
[63

g, Ry g
dr’ dydy’ Ay

are not all small, since they only include two arbitrary parameters' My and X .
In view of this, the system (6) will yield X1 *, cos Vv *, and sin v' ¥ as
periodic functions of t, with a period Il which is extremely long, at least com-
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parable to 1™2. The absolute value of the function X1 ¥, defined in this manner,
always remains inferior to a fixed quantity cornparable in magnitude to unity.
With respect to the.variations in the angle v' ¥, two cases must be differenti-
ated, derending on the values of the constant g. Either the argument v' * will
have a mean motion such that v' ¥ increases or decreases by 2n during the period
or else this argument will execuie periodic oscillations between two limits.

The second c~3e is that of libration.

After integration of the system (6), the second of the equaticns in the
system (5) will yield v*, composed of a linear part in t a.nd of a periodic part
witn the ;:ﬁrlog_lﬂ. The principal motion of the argument v¥ is comparable in
magnitude to

Let us now return to the relations (4). The two equations on the right-
hand sidz are of the generalized Ia.grange type with two varla.bles. After solv-
ing tbese equations, we obtain v - v*, vV - v ¥ x3 - xi, X1 - X1* as functions
of xl, xl*, v*, amd v , periodiec in v* and v *1, with the perici 27, Thege dif-
ferences, mcldental]y, are of the order of 1'~" in the cases of the group (r),.

We have assumed that r 2 —L s from which it follows that the meationed differ-
ences are small quantltles, comparable to ulr or smaller. OCn replacing X' * v
and v P by their expressions as functions of t, we finally obtain v - v¥, v -
-V ', Xa, and X} as oscillating and finite functions of t. Thus, the formal
integration of eqs,. .{15) of Section 27 is rossible if the initial value of X is
of the order of u, except possibly in the cases of the excluded groups (3)s,
(1)3 » and (l)t .

Below, we give an important result of the above statemenis. Let us con-
se.%er the s tem (15) of 3ection 27, by naturally assuming that the furctions

and do not depend on v. Let us consider a general solution in which,
a.t the origin oi‘ time, the absolute value of the variable X is comrarable 1n
magnltude to u! , whereas the corresponding value of the positive variable X' [__lk
is neither too large nor too small. Then, the variable X always remalns more
or less constant and of the order of u' , while the variations of x' are of the
order of ¥, later, we will have occasion to make use of this result, in
studying the stability of moti-n of doubly critical planets from the viewpoint
of formal calculus.

Here, we will assume that the initial value of X is of the order of u or
smaller and also that the initial value of X' is neither too large nor too
all. First 3, We will exclude the cases in whlch the functions H(H. ) ’ Hz,l,(.) s
X-gg ) s and HM_’ are not all independent of v, i.e., the cases of the croups

()as (s, (%)3’ (2)as (L)ay (s (T)E’ (2)s and (2)s.
We can set

=g, =7 +uy'

(8)

’_‘”
H** + ‘2‘7.** —const, = _ll'o, 7=l == ‘u".
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Let us assume that the value of the positive paramel.er < is sufficiently large
so that /X can be expanded in powers of wxj .

This will lead to the equations

dy, dG dv 4@

T - R a— -

dr ~ dv’ dr dy,’

dy/_de, ¥ __dG )
dr —dv' dv T " dy’’

The function G can be expanded in powers of /&:
G =G, + 112Gy, + G, + ---. (10)

In accordance with Section 28, we know that
HEP =0, HY =, £65

R =0, HR=hG + A} cos2v.

In view of this, the function & is expressed by

dii, dh{, L
Go=Axn"+ 71;'9 2t 7;"9 '+ P, cos 2.

In Section 28, we demonstrated that
Iz{,f’)z:—:o, if ¢>5.

Thus, as soon as q 2 5, the system (9) will have the normal form given in
Section 1 and can be integrated from the viewpoint of formal calculus, if the

two quantities
24 zt+- --ZLA and '-a——,* (11)

are not both small.

However, we also must consider the types in which q = 3 or 4. So as not to
go into too much detail, we will assume that the value of the derivative

digly
a

is not too clcse to zero. It is then easy to reduce the system (9) to another
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system which has the normal form. It is sufficient to set

N
2= dh'(” cos 2v
dz'
and to use the canonical variables
Yo 05 v, 0. (12)
These variables satisfv the equations /66

dz. _dG@ dv __ d@
dr dv dr M—dz.,'
dz'_dG  dv__ ag (13)

dr —dv’ dr dy"

where G is now expressed as a furstion of the variabies (12). The principal
rart of > will then be

dagl, Ay
G=‘4‘i[1!+ d 7[+ dl' Zl

Thus, the canonical system is reduced again to the normal form given in 3ec-
tion 1. It is posalble to integrate this system, since we have assumed that the
coefficient, of X} in the above expression of 3 1s not small.,

Here, we will make a final remark on the variatior of the angular variables
in the cases with which we ave concerned since p.22,. If the two quantities (11)
are not approximately at a commensurable and simple ratio, then each linear
combination of the arguments v and v/ will certainly include a term linear in t.
If, conversely, a divisor of the form of

k (2:1 2+

d:go) LY
b4

{where k and k' are two integers) becomes small and if, in addition, the inte-
gration constants satisfy certain inequalities, it will happen that the linear
combination

ky + k'v' = k((lp!'/** —-—,’)‘(u"“) + k'((u’** + (U"‘.) (114')
of the arguments remains enclosed between two limita. Let us see what this

means. In the Introduction to Part II of this research, we defined what we
called the eccentric vector of a minor planst as well as the longitude of this
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eccentric vector. Let now n, n', and -uv" be the mean motions defined on p. 196,
Let, similarly, -V be the mean motion of the longitude of the eccentric 161

vector. In view of this, it is obvious that the following relation will exist
between the mean motions:

aklpn—(p+g)n') + Fuy' + (K —Ef)uv' =

in the case of libration.

Section 30.

ettt

We will row resume the integration of the system (15) of Section 27, for
certain of the cases that we had excluded in the preceding Sections.

Consider the cases of the groups (r), where r = £, 1, or 2 It is here a

question of integrating the mentioned system, assuming that the initial value of
the unknown X is of the order of w™ or smaller and s in addition, that the
initial value of X' is neither too large nor too small.

We then set

1= yr;’z Z1s Z' o Z' + !""’ Zx’:

v' ) (1)

Hyo + T A C=uw@G, t=uh =umtly,

The variables X3, X1; Vv, V satisfy the canonical system

dz/ _dG¢ dv_ 4@ (2)

In the cases of the group (})s, the function G can be expanded in powers
of ull't . We set

G =Gy + WhGy + Gy + ---. (3)
The first functions G then are expressed by \
/68
G == Ay + H{D = A y* + 17 cos (v + 7'v),
¢ dH(D dAt (L)
[ T

dZ - dx' F AN
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VAT, dVHED FHEY
G’:!’_ 2 d7 A +d}'d 17171 +£"—({ 7 YA +H.l'

In the cases ¢f the groups (1)s and (1), the function G can be expanded
in powers of u"°. Then, let

G=¢, + ey + G - (5)

In these cases, we will have

G, =47+ 7{("—.) =475+ EE_%) + Eh—ig cos (v + §'v'),
jl
d AN dHM (©
“a bt + HED.

G’/: d}' AW d]

Finally, in the cases of the groups (—%—)3 and (—22-)5 , the expansion of G

will have the form

G=0G,+ WGy, + F‘%G‘h + o ( !)

Here, we will have

Go=Ay*+H=Ay+ Zh("’ cos (v + '),

1,5

’ O 8
aug | auw, , o, g, ©)

G"c‘*"dy ll’*"‘&';r“ll =T7—Zl+ d —r )..

In all the investigated cases, the functions G. are polynomials in X; and
X}, periodic with respect to the argumen‘bs v and v , with the period 2m.

The system (2) does not have the normal form investigated in Section 1
since the principal part of the characteristic function depends on the angular
variables.

We have shown in Section 28 that the function HY¥?) in all cases of the _69
group (3)s includes a single terin which, in addition, is periodic. We also
showed there that the function H includes a single periodic term in all cases
of the groups (1)s and (1)¢, except in the cases

9'-'=3, 0=2, .’g“—"li

(9
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where it contains two terms. Similarly, in several cases of the groups (-——)3
3 ion 3R . . . s .
and (-5—)5, the function H_°’ contains a single periodic term; in other cases,

which we do not believe necessary to specify here, the funection H(*if) includes
two or three periodic terms.

In the discussion given below, we will exclude the cases in which the
function G contains more than one periodiec terme The cases, excluded in this
manner, actually seem to present serious difficuities. In attempting to treat
these cases, one encounters differential equations -hich it seems impossible to
integrate by the presently known analytic methods.

If only a single periodic term exists in G, it is easy to reduce the
canonical system (2) to an especially interesting form, by a very simple canoni-
cal transformation:

z =1, y=v+je
& = __]-yxl + er yy =1 (13)
(The variable y, temporarily used here, must not be confused with the argument y

defined in Section 16.) The variables x, X3 P Vs Y satisfy a canorical system
of the type

dx dF dy aF

P = —— - ——

dr dy dz dz

iz _dF  dy _ _dF (1)

whose characterlstlc function can be expanded in powers of a small parameter /70
p' (= ! or ut);

F<FO 4 ' FO 4 (2 FO 4 ... (15)

The principal term of this development has the followingz special form:
FO — Ax*— Bcosy, (16)

where B is a constant, which we obviously can assume t.o be( fosltlve without re-
gtricting the geverality. The following functions F? ese are poly-
nomials in x and ¥ and are periodic with respect to Yy and ¥, having the period
2r. In the actual cases, the functions F °) and F'!) are directly derived from
eqs.(L), (6), or (8).

We will now investigate the system (14).

This system is easy to integrate if " O. Then the Jacobi equation of
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rartial derivatives becomes
s\
A (dy) — B 208y = By,

where ¥ is a parameter. This equation is satisried by the function

s-V'2 f Vy'h osydy. (17)

Let us now assume that the small parameter u' is no longer ger: n
eq.(17), we can consider Y as a certain function of a variable x' and replace x
and y by new variables x and y , by means of the canonical transformation

ds .I/_B‘ e
2= =V Vy + cosy,

o_dS _dSdy _11/Bdy [ dy

dz®  dvdz®” 2 Adﬂ

(18)

V}’ + cos;

The function v is more or less constant because of the Jacobi integral /71
F = const.

Below, we will assume that the value of the function vy never approaches a
value of +1 too closely.

Two cases must be differentiated, deperding on the value of v.
Consider the first case in which
y>+ 1

Then, the argument y increases infinitely with v . [This happens if the
square root in eqs.(18) is positive, which we assume here. If x were negative,
it would be sufficient to select -x and 5y as variables 1nstead of x and y.] We
will define the relation between Y and X by expressing thut y and y increase
similtaneously by 2n. Fror this, we obtain the conditior

8::
2 = 1 B dy _____‘{!I
Adsd, J Vo + cos y
(19)
7=+1 for a2%=20,

In view of this, x and y - y are periodic in v . with the perlod 27, 1In addi-
tion, the functions x and y deperd in a certain manner of Yv(x) and are holo-
morphous as long as
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2°>0 leyy>+1,
Consider next the secornd case in which
—~1<y<+1.
It is then necessary that

—y<cosy< +1.

Consequently, the argument y can never exceed the two value - + cos™* (<y). 1In
this case, we will define the function v(X) bty the relation
72
arccos (=)
2r=l Bdlg‘ J‘:i__’
Adzt ¥y o cosy (20)

7=+1 for 2%=0,

Thus, the variables x and y, expressed as functions of £ and y° , are periodic
in y» with the period 2r; in addition, these functions remain holomorphous as
long as

——C<ZO<03

where ¢ is the valus of .. which corresponds to vy = -1.

In both thesz cases, the varlables < ’ X y , ¥ satisfy a canonica)
system

dz® 4o dy* _ _«®
dr ~dy, dr dx*

(21)
da'  do ay' do

dr “dy'  dr T da’

The character.;stlc function 9(): s ¥ ¥y , y ) is nothing else but the function
F(x, X ; v, ¥ ) after x and y have been replaced by their expressions as a
function of v(¥) and ¥, derived from the transformatlon (18). Thus, the
function ¥ is periodic with respect to y and ¥ s with the period 2v. In addi~-
tiun, ¢ can be expanded in the form

O =0 + ' ON 4 PV 4 ..., (22)
The first term of this series has the expression
DO = By(29).
Consequently, the system (21) has the normar form given in Section 1. The
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method of reduct.on discussed there remains applicable here as long as the
divisor

dow _ 537 (2)

dzo = “d2
does not become too small, i.e., as long as Jq) does not approach too closely ‘:_'}

the value zero (or else as long as Y does not approach too closely the value +1).

To reduce the system (21), we start from the egquation

w(dS as .. dS

dy*’ ay’; U y') =, (xo‘ T gzl
The unknowns ¢x and S can be expanded in powers of p', in such a manner that

O, =00 + 'O + ¢ DD 1 -,
S =280 4 @'SW 4 (282 } ... - (2
We set
SO = 2040 1 #'y.
We find f'irst
0P = O = By(a9).

Next, to determine 9?;_1) and 31 » we obtain the equation

So that S* be periodic in y° s it is necessary to put

n

D = [ON] = ;t f W dyo.
]

In view of this, the function 5{1) ig obtained after a quadrature and without
(o)
small divisors, since we assumed that the derivative -%(5_ is not small.

Under this condition, we can continue in the same manner and successively
determine the various terms of the series (2,).

Let us assume the following function as being formed: [Ih

232




S(2%. 2'y; ¥% ).

By means of the canonical itransformation

s, _dS

ap’ YT dm,

U 25 (25)
z':: ! =

we introduce new variables x*, s y*, v_x, which satisfy the equations

o, _ Ay, __do, (26)
dr ’ dr _ dz°,’
41* _do,  dy,_ do, (27)
Tdy, dr dzr’,
It is obvious that
2%, == const.

We assume that the value of Y()&) is not teo close to +1.

The variables X,, ¥} satisfy a canonical system (27) with one degree of
freedom. Because of thls, we obtain the relation

o, (xo* ’ 1’*; y'*) = (;’ = const. (28)

Thus, Xy is a certain functicn of yy. We must assume that the characteristic

function &, is such that the absolute value of X, always remains below a certain

1imit, comparable in magnitude to unity. In fact, for too large values of the

quantit, ,x*| , the expansion of the function 2y in powers of the given para-

meter » could become 111usory, since the various terms of this series are poly-

n?m}als with respect to xy. Let ¢%’ be the first of the functions &4, /15
s ++- which is not a constant. If the abbreviated relation

OB (2%, 2'y; ¥,) == const. (29)

defines a limited function x*, then the complete re_..at.lon (28) will do the same.
If, conve{sely, in the relation (29), the quantity x* may become infinite or
else if Q* no longer depends on X,, then the integration nethod given here is
no longer applicable.

Thus, let us assume that Ix*l always remalns below a limit which is not too
high. It is obvious that x*, cos y_,,_, and sin y* are periodie functions of T.
At the end of the period, the argument y* will either have increased by 27 or
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else this argument will have resumed the value it had at the beginning of the
pericd.

The second of the relations in the system (26) irdicates that the deriva-
tive of the argument y, is also periodic, with the same period.

Equations (25), solved first with respest tc the unknowns < y X3V, T,
will finally yield these varlablps as Known f cnctlons of 1. We note specifi-
cally that the differences x - ;S;, Y x*, ro- y%, y' - y,L always remain
small and of the order of u'.

Finaily, the transformation (18) will yield x and y as functions of 7.

Thus, in the hypctheses esta}:llsned by us as to the value of the pammeter
X% and as to the variations of x*, the absolute values of the varisbles x and X
rerain limited and comparable in magnltude to unity. Devending on the values
selected for the 1ntegrat10n constants x* and ¥, one or the other of the two
arguments y and ¥ can either increase (or decrease) infinitely with 7 or else
remain enclosed between two limits. 1In the latter cise, the considered argument
presents a libration.

Let us now ret{‘m to the cases of the group (3)a. We must first find
whether the furnction x* remains limited. In view of the second of the formu-

1?. (4) as well as of the transformation (13), it is obvious that the function
1) has the varticular form of

FO =(az + a'7) cos y,

where a and a' are constants. The function ¢'*} 1s obtained by introducing, /76
in F'Y) , the quantities x and y as functions of < and y° in accordance with
the transformation (18). Finally, we find

2z
(l‘“) (10 z:" y') = ;,l'; ' Fa dyo

11 B dy l/ f , ," cosv/dy }
T 242 Adr"{ cosydy +a'z V/ + cos'y

By means of integration (c), the variable y must increase from zer> to 2, if
7()>+ 1.

Conversely, this variable must first increase from -cos ! (-y) up to +cos™* (-y)
and then decrease by the same values, if

—1<y7(zx9) < 41
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In the first case, the square root ./-Y + cos y remains positive while, in the
second case, it will always have the same sign as dy. Consequently, the integral

cosydy
(¢}

is zero in both cases. Finally, because of egs.(15) and (2C), we will have

oY --a'2' R(7),
where

* cosydy

Riy==| .-

7+ cosy ( V/'+ cos.}'

(t

The quentity R(Y) is nct identically zero.

Let us now find the expression for a' . The second of the formulas in 117
tne system () as well as the relations (13) show that

dh(’/')
a Y :t - ~A.

dy

In Sectio. 28, we gave the expression for the function (1:,4‘2’ in the six cases of

the group {3)3. We thus find that

a'=0, if =0,

and that
a =0, if $=—3,—2,—1,+1,+2.

In the five cases in which 3 # O, the variable X, is more or less constant.
It follows from this that the discussed integration method is still apniicable,
orovided that the value of vy is not too close to +1.

Conve{selv, in the remaining case of the group (})s, at wh1 ch > = 0, the
function 2’ vanishes identically. Evidently, the functions F* , ® 1) , end
5(*) are a}so identically zero. It then becomes necessary to investigate the
function &y

(2)
L

S(Z)

On forming the equation, defining and , we see immediately that

O = [O").

Moreover, the third of t.he formulas in the system (/,) as well as the relations
(13), on putting there j' = O, indicate that




@) = F@o = Hil,

To investlgate the form of this function, for the case in questien in which q =
=3, =1, 3 =0, it is necessavy {o return to eq. (L) of Section 28. In the
sum given there, the number j' must satisfy the conditions

="+ 23 =] =even, —6<f +7'<0.

It follows from this that the number ;' can assume only the two values i’ = ©
and ' = -2. Consequently, we will have

F e h‘“ + h“’ cos 2y + h‘“ . €08 (2y —2y').

To obtain ¢(2), it is 3 ’f1c1ent to replace, in F“) the quantity y by its ex-
pression as a function cf ¥ and v . U51nz then the mean value of 32 ith
respect to the argument y (and writing x*, y* instead of ¥ and ¥y ), we find
that &7’ would have the form

P = P(z°) + Q(z°,) cos 2¢/,,

where P ard ) are certain functlons of f;. This is an expression thai depends
on yy but is independent 0; Xy- Consequently, the variations in the function x*
would be of zhe order of B 1, so that the given integration method nc Jonger is
arplicable to the case in which q= 2,2 =1, 3 = 0.

L2t us now return to the cases of the groups (1)s and (1)¢, but excluding
the two cases (§). The second eqpatlon in the system (6) as well as the rela-
tions (13) indicate that the function F1) now has the particular form

ﬂm=w+d£+Mz+d£M@y+j&yy

The quantities c, d,a,a are constants. The function f{y, ¥ ) is independent
of x and of X and is periodic in y and y'. We have, specifically,

ary, dia R
dr’ a—‘i d;y,’ /(y:y)=ﬂf‘."-

The constants ¢ and a' are not identically zero. It is ObV}OUS, as in the dis-
cussion of the cases of the group ()i, that the function &’ has the form

q)(.”m Kx'* + P(y’,).
where K is a constant that generall is not zero, whereas the functlon P(yy) is
independent of x* and periodic in y,. Consequently, the value of x* generally

remains limited. The mentioned integration method is applicable, rrovided that
the value of v is not too close to +1.
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let us finally return to the cases of the groups (“%-)3 and (—%—)5, but /7%

excluding the cases in whi-h H;ﬂ?) contains several periodic terms. The second
of eqs.(8) as well as the relations (13) then show that

FW=cp 4 c'x',
where

From this it follows that

oW =c'x', + const.

If ¢ is not zero, which we assume here, the value of x; remains more or less
constant. The mentioned integration method is then arplicable, provided that v
is nct too close to +l.
We will now integrate eqs.(15) of Section 27 for the casz of
g=3,«=1, 3=0

which, until now, had been set aside.

I* is convenien: to put then
=",  r=pt =y,

d
He, + o Ayg— C == 1@

and to retain X' as variable, since its variations are comparable in magaitude
to unity. A4s starting point, we thus obtain the equations

X2 _dG “,..dt; __d@
“ar Tdv’ de T T dy’
‘ (30)
dy_dG v __de.
ds _ dv’ dr dyp
In the expansion /80

QG = Go + ‘“|‘-. Gl"‘ 4 ‘"lla G’u” + -,

we will have
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G, = Ay, + 2H() cosv,
G::‘ = 0

Gy = /Hm = h”’ + ]l“) cos 2v + Iz") ,C8 (2v—2v),
=0

(31)

The coefficient h'll?’O' is a cpnstani (see Section 28).
derived from the functlons h,,,.) defi ned 5 Section 28,
These guantities {'e polynomials in X fbp

zero degree, and hg-3 of the seco..d degree.

The quantities ES,,.) are
oy putting there §§
is of fhﬂ third degree, hyp

For reasons of analogy, we introduce the following notations:

=y, Y =~=uv, F=@G,

=y, yr ~=9, 'u' "1;,' (32)

I

This will yield the system

,dz _dF wd_y .
Ydr T dy Sdr dx
(33)
d_dF  dy __dF
dv  dy dr dz'
The function F iz given by the expansion
F=Fo + % 4 !"314"(2) + .“'3 FQ + .-,
vhere
F® G,=Az*- Bcosy
F® =Gy, = i, + k), cos 2y + kfh_, cos (2y — 2y ()

We next introduce new variables X ’ y°

instead of x and y, by again making
use of eqgs.(18), (19), and (20).

/81
Thus, the system (33) is replaced by

il _do e do

de “dy’ " de dx° (35)

de _do  dy __do
de " dy'’ di ~  dd "
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where the fun-tion
(2% 2'; 4% y)
represents what becomes the function

F(z,2; y.9),

if x and y are replaced by their expressions as functions of Y(x°) ard .

The function ¢ is periocdic in v and ¥y . with the period 27, This function

can be expanied in the form of

Q@ == QO + * 4 ‘“'!(b(?) + !l'S(D(B) + ...
We have, specifically,

OO — By ().

The func*ion Y(xo) must also avoid the vicinity of the value +1.

To reduce the system (35), we starc from the eguation

148" a8’
way dy'’

. as
v, y’) =, (x", = 3%) ’
where S' and 2, are unknown functions. We put
S'=2'y' + u' (2°° + 8).

Then, the function S satisfies the equation

as

1S

. d8
D (xo + dy°9 '+ .“'iyl H :'/Oa y,) - m* (1}0, x'; y * ‘“ldu:') )

It is possible to expand ¢4 and 3 in the form of

O, =GO + * + (2 OP 4+ (B OP + -,

S = WS g IS

We first find
GO = (O = By(29).

. Then, the equation yielding ‘f(*a) and 5'*' becomes
f d00 48
* da¥ dy°
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, 13
For ¢%%), we must select the mear. value of ¢'2’, i.e.,

2a

@y f OGP = i, + (B, + ), cos 25) Q(7),
1]

where the function Q(y) is defined by the formula

27
e o__l_l Bdy coe 2ydy
Q(/)Mgﬂafcos 2ydy —2 2 Ad.’toflly,*_ _;j

co_s2/dy /‘
V/+cosy Vy+ cosy

The integrztion procedure (c¢) has been defined on p.234. After having selected
@*) in thiv manner, we obtain the function st® by a quadrature without small
divisora, provided that the value of Yy is not too close to 1.

Evidently, it is possible to continue in this manner and to successively L}_

determine the various terms of the series (36).
Consider now tne function
S' (2%, @'y; 3% ¥)

as well as the canonical transformation

Lo {1.§,’ 2©0, == jé’i_
e Tdy®’ Y Wd,’
o 88 ) a8
dy’ ! Yx zr*
which can also be written as
d ds
@l aly= g Ye—Y =75

8 (38)

a8
-’c'—?-"*=.“'d“3'lv Su Y =uga

In view of this transformation, we will have

(20 2'; Y% ) =@, (-4, 2y ¥
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Finally, the new variables satisfy the equations

ddy _do, dyy  do, \
dr _ dy,’ dv ~  dz',’ (39)
dz°, dy’ do, :
dr 0, dr ~ u'dx%,’ ' (I‘LO)

Thus, ¥, -s a constant. Its value must be selected such that y(x}) is not:
:close to +1.

; The variables Xy and ¥ satisfy the canonical system (39) with one degree
oi freedom. This system has the first integral

Dy == DY + W2 WP - = p=const. (41)
The first term é(o dep?nﬁis only on X and is a constant. In accordance with L&t
eq.(37), the functlon ¢{%’ has the form

P () + P, (2',) cos 24/, |
jwhere P is a polynomial of the third degree and P, is a polynomial of the seconé
degree in x*.
: The relation (41) shows that the variable x'* always remains limited and
.comparable in magnitude to unity.

‘ In addition, the quantities Xy, cos ), and sin ¥ are periodic functions
of 7. Thiz is the same for the derivative of the argument y,, in accordance
w:Lth the second equation of the system (40). .

After thls, let us return to the relations (38). These equations can be |
,solved for » x H y , ¥ by making use of the generalized lagrange method mth}
'tm varlables y and ¥ . We concludeg, speclflcally, that the dlfferences X -
. x_,vr and X - Xy are comparable to O ® resp. b'° = uak. Thus, X is more|
or less constant, and the value of ¥ remains limited.

pf vy(¥) and °.

Thus, the system (33) or the system (30) or else the system (15) of Sec-
tion 27 can be integrated in the case in which q = 3, =1, 8 =0, provided
that v is not too close to +1.

In the method used for integrating the systems (14) and (33), we assured
that the value of the quantity vy, introduced by egs.(18) and (19) or eq.(20),
is not too close to +1. We found that the series (24) and (36) actually contai
|negat1ve powers of Y = 1 and of log IY - l| such that their first terms converge

|
Finally egs. .(18) and (19) or eg.(20) permit expressing x and y as fnnct,n.onqI
I
t
|
|
!
5
|

' more or less like the terms of a geometric series, in accordance with powers of!
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the ratio W :(y - 1). Consequently, if |v - 1| is of the order of u¥* in the i
1nvest1gated cases of the groups (})a, (-——)3, and (-—)5 and also if |y - 1| 1%

comnarable to k' in the investigated cases of the groups (1); and (1)s, i% is
impossible tc say anything as to the form of the solution of the system (15) in
Section 27. Specifically, we do not know then whether the variable X' still

-~ remains limited and whetner the unknown X constantly remains small.

e We should mention also the variations of the arguments in the cases invest]-
11 gated in this Section 30. We have seen that one or the other of the arguments /8

[
'

v+ §'v' ond o
° .
.o (or both simultaneously) sometimes is subject to a libration. To these iibra-
- tions there obviously correspond the relations

alpn—-(p+q)n) +juy' + (G —B)uv" =

2 wy + pr' =90

o, between the mean motions n, ' , 4uv' , and V" defined above (see pp.196 and
»5 227). Here, we encounter, for the first time in our report, cases character-

s ized by two simultaneous librations.

-

N A few words should be said on the excluded cases of the groups (1), resp.
;(%.)q in which the function HJ) resp. K}’ contain several periodic terms.
;fLet us consider, for example, the case

o g=4,a=1, #=0. (12}
. l
o » If we also use egs.(l) of Section 30, we will obtair a system of the |

,form (2) in which

W G, = 47, — B cosv— B cos (v—2¢').

In this expression, A, B, and B are constants.
o The canonical system for p = 0, whose characteristic function is G, can
 be integrated by the Jacobi method. However, it is easy to demonstrate that,
o ;in this solution, the variable Xi is not limited. Evidently, we cannot start
* from such a solution, in the anplication of the method of arbitrary variation
’ iof constants.

" ! The artifice used so successfully in the-case in whichgq =3, =1,8 =1

48 no longer efficient in the present case.

Congeouently, in the excluded cases in which Gy contains several periodic

2




terms, we know nothing as ye! on the general characlter of the solution, if
the initial value of X is sufficiently small.
in Section 32 and treat it t..cre in a different manner.

|

Section 31.

/86

W2 will return to this question

Toward the end of Section 29, we integrsced the system (15) of Section 27,

by assuming that the initial value of X is o the order or p or smaller.

We

excluded there not only the cases investigatec later in the present Section but.
also the cases of the groups (2),, i.e., the cases in which the argument v ap- ‘
Here, we will resume the integration for :

pears first in the f nction Hiy .
certain cases of the . -oups (2)q «

We again will use ¢gs.(8) of Section 29.
variables X1, X1; V, Vv again satisfy a canonical system of the form ($) of

The

Section 29. In the series (10) of the same Section, the first term will r~w be:

expressed by

Go=Ay?+-

Here, we have already caused the following term to -anish by nsing the artifice!

igiven on p.226

which does (2ppear as soon as q = 3 or 4.
includes a single term periodic in v.

functlon F

We will introduce here new variables by setting, somewhat

eq (13) of Section 30,

x ==

gl —jr +

V
|

@he variables x, X ; ¥, ¥ satisfy the caronical system

1
!

i
|
l

The characteristic function F =

i
\
1
i

it

dz

de’

da'
di

F == p O lu'F(l) I l“'!F('Z) + ..

1
24

dh(l)
dx Zl

dhd

0,0

dxr %

Ko cos 2v'
hqzcos2v

dﬁ'
~d 1/

aFr

-dy"

]
dhly |

)

+ B },

cos (v + §'v').

In addltlon, we have assumed that the

Tpay
MRS

d1/
dr

dy

dF
Td'

G - const can be expanded in powers of "

similar vo

~~
L)
— et

K
ks
s
LN

—~
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The principal term of this expansion has the specific form
FO— A2* —Bcosy + Cx'. {rn)
The quantities A, B, C are constants. The last quantity is expressed by
dh},"0 (5)
dy
;l‘he functions F'1’ s 2 s ++- are polynomials in x and X , which are periodiec ‘

with respect to the angular variables y and 7' having the reriod 2n.

This makes us return again to a canonical system, slightly more general
than the system (14) in Section 30. Below, we will assume that

Cxo0,
and even that |C| is not small.
To reduce eqs.(2) to the ngrmal form given “n Section 1, we will replace x
and y by the variables ¥ and Y , by means of the canonical transformation (18).

*-. of Section 30.

The function y (¥ ) is practlcally constant because of the Jacobi Zntegral -

. and because of the fact that X is practically constant. Below, we will assume-

that the value of v does not too closely approach the value +1.

. As in Section 30, we differentiate two cases. If /88
7>+1,

y ~then the function Y will be defined by eq.(19) of Section 30. If, conversely,

| —1<y<+1,

'then Y will be determined by eq.(20) of the same Section.

i In the first case, x and y - y° are periodic functions in y° , with the .

;penod 21, In the second case, x and y resume their initial} vaolues as soon as

y increases by 27. In addition, x and y are holomorphous in X az long as

Y\x) 7 +1. '

The variables X » X3 y° , ¥ satisfy a canonical syster

|
'%
de Tdy' de T w (6)

dz® do dy° _
dz _do  dy __do :
1 ds " dy'’ ds = d7 :




where
Flz, 2y, y) =02 2, 4% ¥)-
The function ¢, which is periodic in 3 and y , with the period 21, can be
expanded in the form of

Q=0 4 'O + "G ...,

The rrincipzl term of this expansion is expressed by

@9 = By(z2°) + Cx'.
Thus, the system (6) is of the normal type, investigated in Section 1.

If the two quantities

dy
Big = ©

are not more or less at a commensurable and simple ratio, then the system (6)
can be reduced to another system whose characteristic function does not depend :
on the angular variables. In that case, a formal integration is easy. /89

If, conversely, & certain divisor

dy

Ldeo

+kC

is smll, we can .se the znet.hod descrlbed in Section 1 for introducing new
canomcal varla.bles Jc,(., x*, y*, y* The new characteristic function depends
on y* and y* only in the combination

ky, + Ky *e
From this, we obtain the first integral

k'z% — ka', = const. g
By means of a linear canonital transformation, the new system reduces to another
system, with one degree of freedom. It is easy to demonstrate that the formal
integration presents no difficulty.

Thus, we are able to integrate eqs.(15) of Section 27 als> in the cases of |
the groups (2), by assuming that the 1n1t1a1 value of X is of the order of u
pr smaller, that the initial value of %' is neither too large nor too amall, a.nc}
that - in addition - the initial value of the derivative

l
(
{
i
|
i
|
i
!




<

is not too small. (we have been forced to exclude only the cases in which the
function }Cf*’ includes two or several periodic terms in v.) Under these condi-
tions, we found that the ratio lxl . cannot becore large and that the value of
X' remains more or less constant.

Section 32.

In the three preceding Sections, we have frequently been able to complete
the integration of the equations of motion of doubly critical planets. In all
cases in which the integration has been possible, it happens that the major /
axis, the eccentricity, and the inclination remain practically invariant.

This raises an interesting problem. It is here a question to know whether,
in the cases in which formal integraticn has been impossible, the inequalities
of +the mentioned elements may become so extensive that the investigated planet
changes into a comet.

To investigate this problem, we return to eqs.(15) of Section 27. 'The
‘canonical system in question possesses the first Jacobi integral

H,, = const. (1)
Primarily, let us consider the types in which

q=3

excluding, however, the cases of the group (1/2);, i.e., the cases

q=3r ¢!=l, “‘3£ﬁ_<+2. (2)
Let
(HEY
be the expression of the function H(*l,i_) by putting there x = C. ,
The Jacobi integrel can then be written as :
| Azt + (HD) + - = const. (3)

The neglected terms of the first member of this equation are of the order of T
or smaller, as long as f)’l s/ and X' _have values that are not too large. The |
function (Hig’ ) is a polynomial in .X' , with coefficient. that are trigonometrig¢
‘[functions with respect to the arguments v and v in the cases of the group (1)33

1
i

Bnd are constants in the cases of the groups (-g—-)a, (2)a, (—g—)a e (33 +ae

Let us recall specifically that the function (H;*’i) ), for g =3, is a polynomiaﬂ
of the sixth degree in X' and that the coefficient of X'* is always msitive !

1l

2,6




(see p.213).

In accordance with our assmption, the constant of the second metber of
eq.(2) is of tne order of .. 1In view of this, it is obvious that the valtes of
the positive quantities ! 2% and X' can never exceed a certain finite limit /91
which is independent of ..
g+3 .. ftmsae s

- , the stabiiity is ensured

from the formal viewpcint, except rernaps in the cases (2).

Trus, for critical :lanets of thre tyres

This procf is no longer apolicable at ~ 2 L, since then the function H;f*)
P M \
may become negative {or large values of X .

Let us now co:zider the types in which
924
excluding only ihe cases of the greup il)s, i.e., the cases
g—4, a=1, 3=—1,--3,—2,—1,0,+1,+2, +4. (L)

de ull assume here that, at the origin of time, the aosolute value of the
unknown X is small with respect to L-ll and th:t the vaiuve of X' is finite. We
will demonstrate that the absolute value >f £ vill always remain small with
respect tc »7° and that the unknown X will always remain practically invariant,

. For the prcof, we again start from the first Jacobi integral, given by
eq.(1).

Ir the series (17) of Section 27, the first terms are expressed by

H® = 4% + const.,
H =0,
HY) = k(‘)}’o.

Wiith respect to the funct.Lon o,g , it is sufficient to recall that this function
is a polynomial in x' , which is irdependent of v and v\, is rational with re-
spect to X, and is finite for x = 0.

' [
; Let (hg,o ) be the polynomial in X' with constant coefficients, obtained by |
putting X = 0 in fé,o l'
i |
; Then, because of the Jacobi integral, we will have [92

At p () + -+ = const.

The neglected terms of the first member of this equation are of the order of

_L7




£¥  as long as X' and |x:fi] have not tou large a value.

L&t us assure, an assumption which we want to prove impossible, that the
variable X' varies by a guantity comparab ¢ in ragnitude to unity. In a case
of this nature, we could fix an instant to such that the value of X' would be
neither too large nor too small but sufficiently different from the initial
value. Because of the Jacobl integral, the correspocnding value of the ratig
l&.-hl would be neither too large nor too smal; but. comparable in magnitude to
unity. Then, we could select the instant t3 as the origin of time and demon-
strate, by means of the process given in Section 29, that the absolute value of:
the unknown X could still have “een compar:ble in magnitude to unity. However,
this cannot be true since we have assumed that X had first been smail with re-
spect to /B. Thus, X remains more or less invariant, and the quantity le:fh ‘
remains still small.

From the above discussion we can conclude that the inequalities of the
major axis, of the eccentricity, and of the inclination ares always small for
doubly critical planets, except possibly for planets of the types (p + 3):p in
the cases in which .

e=1, f=-3—-2—-1,0+1, +2, i

and for planets of the types (r + L):p in the cases in which
a=1], ﬂ=—4,—3,—2,—l’0,+]'+2’+4_

In these exceptional cases, we are unable toc make any statemenis as to the®
magnitude of the inequalities of the mentioned zlements.

We want to emphasize specifically the rataer remarkable result thiat the
motion of critical planets is stable from the viewpoint of formal calculus, in
a7] types in which

g>5.

Before concluding this report, we will give a few formulas that might be /93
useful for classifying, in the theory of doubly critical planets, the inequali-'
tles of the primary elements %3, y1, %, 'k defined in Section 2. These formu-
las are

i =%, +(x,— %)=z, + puz 4 (z,—z,)

=Xy + HZyy t (z"'ztl*) + (7, — )

=%, '+ M2, + napy + 1z —24) + 2, — %),
0 =i+ (!/:'“fh)=9 + p;qt + (Y — )
N + N . 5
= Yuu T p‘p‘qt F (Y —Yax) + (¥ —9),

&

. . B - - .
B 5+ (§1"’§1) =ce' + V!‘gl** + l’.“ §‘ “'bt'**) + (§x—"§;),
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=T+ (g o) = lr“ Yas + ‘/'.'A‘.('}' —1'w) + (G — 1)

. e

: (§ \2) = V“ E"i«, + l“—(;" - E":*) + (§: - .éz)n

o &
~2 " >

17, -‘-(r,—-—l.)==lui ‘,,,+Vu(r — 1) + (r— 7).

Thus, the inequalilies are subdivided into three groups. Thouce of the first

group are slow;y variable and are obtained by integration of the system (11) of;

Section 27. The inegualities of the second group, which also vary slowly, are

derived after solving eqs.()0) of the same section. Finally, the inequalities .

of the third group, whose variations are rapid, are defined by the formwlas (¢3)

of Section 16.
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